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Learning Objectives

Define the Story Cloze Test and determine its place in guided story generation

Understand the reasons why RAG was created
Explore how the retrieval component interacts with the LLM in RAG

Extract implementation details from papers and find different ways RAG is
implemented

Compare plot-guided generation to retrieval-augmented generation for stories
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Review:

Scripts, Procedures, and Plots...oh my!

Schank & Abelson believe that everyone
has scripts in their heads built from
common experiences

Authors often plan out plots before they
write stories

Plot Plot Plot
point point point
1 2 3

Dtory
Plot Map

Rising
Action
7Zhis includes the
events leading up to

the main problem or
conflict.

Background
Jhis includes the
introduction of
characters and
setting.

Climax

7his is when the problem
reaches a high point!

Falling
Action

7his is when the
characters work to
solve the problem
or conflict.

2nd Setback

1st Detback
Resolution
Jhis is how
Inciting Insident things end up
in the story.

https://i.pinimg.com/736x/57/f7/03/57f703afc709080bddc2c3cfed8dd061.jpg
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Review:
Scripts, Procedures, and Plots...oh my!

Schank & Abelson believe that everyone
has scripts in their heads built from
common experiences

Authors often plan out plots before they
write stories

. _ Plot Plot Plot
Stories that aren’t planned out either point point point
have to “reincorporate”[1] ideas or the 1 2 3

“—

stories feel unfinished

[1] The idea of reincorporation is explored in the book Impro by Keith Johnstone
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https://www.amazon.com/Impro-Improvisation-Theatre-Keith-Johnstone/dp/0878301178

Review: Ways of Extracting Plot Points

Most salient keywords

Event representations

Verb-Noun Sets

n unwittingly unleashes an insidious pox

sentence_

<PERSON>0 disassemble-23.3 contagious-disease.n.01 Stories and Goals
|:l—\ ' Event /ﬁ\
Eventify event, 2
- o nowedge DRS Parser o Knoviedge
Generated Story - o Event H H
Title Dynamic | Planning g Writing | Tina made

Goal Nodes
Goals Graph
. Working &
Spaghetti Sauce |—» |- — — - — - — — —-— - — - —- — | — | spaghetti for

Long-term event
her boy friend. memory
Static [ Planning ] Writing ] ...... male.n.02 spatial-configuration-47.6 = adopt-93

I Event
. . generalized
Figure 1: An overview of our system. Slot filler sentence 2 M
Lo Sentence {77 Evéntsto Senfence 1

1 Convereter.
male.n.02 crumples and is about to be
sentence,, , i po

_________________

Last event nodes

Story Graph

He crumples and is about to be husk ﬁ

New goal-based story

10/2/2025

RETRIEVAL-AUGMENTED GENERATION



Review: Generating with Plot Points

Co-generated vs conditioned (prompted) with plot

Generate event & then translate to natural language

Graph algorithms (Loopy Belief Propagation)

sentence, ERSON>0 disassemble-23.3 contagious-disease.n 01
' Event
Eventify event, 2
| ven
<PERSON>0 = johr

Title

Spaghetti Sauce |—»
atic
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The Story Cloze Test




What is a Cloze Test?

= Something is removed from a text; try to guess what’s missing

= Used for reading comprehension, grammar, etc. (with humans)
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Narrative Cloze Test

Evaluate “event relatedness”

Find which events could be missing from a narrative chain

Uses verbs only

N. Chambers and D. Jurafsky, “Unsupervised Learning of Narrative Event Chains,” in Annual Meeting of the Association for Computational Linguistics: Human Language

Technologies (ACL-HLT), 2008, pp. 789-797, doi: 10.1.1.143.1555.



Narrative Cloze Test

Known events:
(pleaded subj), (admits subj), (convicted obj)
X pleaded _
Likely Events: _
. . . X admits _
sentenced oby  0.89 | indicted oby  0.74 .
paroled obj 0.76 | fined obj 0.73 _ convicted X
fired obj 0.75 | denied subj  0.73

Figure I: Three narrative events and the six most likely
events to include in the same chain.

N. Chambers and D. Jurafsky, “Unsupervised Learning of Narrative Event Chains,” in Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies (ACL-HLT), 2008, pp. 789797, doi: 10.1.1.143.1555.



Finish the story

Gina was worried the cookie dough in the tube would be gross.

She was very happy to find she was wrong.
The cookies from the tube were as good as from scratch.

Gina intended to only eat 2 cookies and save the rest.

A. Gina liked the cookies so much she ate them all in one sitting. V

B. Gina gave the cookies away at her church.

Mostafazadeh, N., Chambers, N., He, X., Parikh, D., Batra, D., Vanderwende, L., Kohli, P., & Allen, J. (2016). A Corpus and Cloze Evaluation for Deeper Understanding of

Commonsense Stories. Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), 839-849.
http://www.aclweb.org/anthology/N16-1098



Story Cloze Test

Predict/select the most likely story *ending*
o Given the first 4 sentences of the story

Full sentences

Multiple choice evaluation

Mostafazadeh, N., Chambers, N., He, X., Parikh, D., Batra, D., Vanderwende, L., Kohli, P., & Allen, J. (2016). A Corpus and Cloze Evaluation for Deeper Understanding of

Commonsense Stories. Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), 839-849.
http://www.aclweb.org/anthology/N16-1098
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An RNN-based Binary Classifier for the Story Cloze Test
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Think Pair Share

The Story Cloze Test was created for evaluating systems’ performance on
understanding stories.

How could you use it instead for generation?
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Retrieval-Augmented Generation




Retrieval-based l[anguage models (LMs)
Retrieval-based LMs = Retrieval + LMs

Itis a language model P(x, | x1, x5, %, X,,_1) Toronto

Ottawa msssssss—— (.31
Vancouver mmssm (.13
Montreal m 0,03
Calgary = 0.01

0.52

The capital city of Ontariois ___

(can be broadly extended to masked language
models or encoder-decoder models)

® |t retrieves from an external datastore (at least during inference time)

Input
Datastore

- “\ “ N AN LY X
< Q“\\“,{‘“‘“ TR \\2\\,._1

bvqnwu&

10/2/2025 RETRIEVAL-AUGMENTED GENERATION




Retrieval for knowledge-intensive NLP
tasks

Representative tasks: open-domain QA, fact checking, entity linking, ..

— In the stomach, gastric acid
What protects the . and proteases serve as : ;
digestive system against Retriever powerful chemical defenses Reader g:?:)rtl:a:;: [:']'d

infection?

against ingested pathogens. |
[1] Wikipedia - Immune system ‘

\

Text Collection

Image: http://ai.stanford.edu/blog/retrieval-based-NLP/

Drives a lot of research on better algorithms for dense
retrieval, e.g., DPR (Karpukhin et al., 2020), CoIBERT
(Khattab and Zaharia, 2020), ANCE (Xiong et al., 2021),
Contriever (lzacard et al., 2022), ...

Why retrieval LMs!?
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LLMs can’'t memorize all (long-tail) knowledge in their parameters

Why retrieval-based LMs?

g List 5 important papers authored by Geoffrey Hinton

_ _ o What is Kathy Saltzman’s occupation?
Geoffrey Hinton is a renowned computer scientist ...

o Here are five important papers authored by him: 0.8 mmm unassisted LM :
1. "Learning Internal Representations by Error > retrieval-augmented |
Propagation" (with D. E. Rumelhart and R. J. ° I
Williams) - This paper, published in 1986, .. / g0 ‘ ]
2. "Deep Boltzmann Machines" (with R. l i I :
Salakhutdinov) - Published in 2009, .. / 0.0 : . .
10 102 103 10 10°
4. "Deep Learning" (with Y. Bengio and A. Courville) - Popularity
Published as a book in 2016,... x (Mallen et al., 2023)
5. "Attention Is All You Need" (Wlth V. Vaswani, N. GPT-3 davinci-003: 20%-30% accuracy

Shazeer, et al.) - Published in 2017, this paper
introduced the Transformer model,... x

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi. 2023. When Not to Trust Language Models: Investigating Effectiveness of Parametric

and Non-Parametric Memories. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 9802—9822, Toronto,
Canada. Association for Computational Linguistics.


https://aclanthology.org/2023.acl-long.546/
https://aclanthology.org/2023.acl-long.546/
https://aclanthology.org/2023.acl-long.546/
https://aclanthology.org/2023.acl-long.546/

LLMs’ knowledge is easily outdated and hard to update

Why retrieval-based LMs?

g Who is the CEO of Twitter? Google  Whoisthe CEO of Twiter? X

F.]
fo

{=

Q Al [E News [& Images <& Shopping [+] Videos : More Tools

As of my knowledge cutoff in
September 2021, the CEO of

ChatGPT Twitter / GEO

Twitter is Jack Dorsey....

About 1,090,000,000 results (0.45 seconds)

Linda Yaccarino

Jun 5, 2023~

» Existing knowledge editing methods are still
NOT scalable (active research!)

Datastore

» The datastore can be easily updated and
expanded - even without retraining!

BN S
A
3 e ~ \) L N R ,-v*

5 GQ\- @‘: R\\ ‘}\33 \\)\\\%&&

PEST A - NSNS
DO

) ;&
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Actually Google Al gets it wrong too...

* Al Overview

There is no CEO of Twitter (now X); Elon Musk is still the owner,

but he Steeeed down as CEO in Julx 2025, and Linda Yaccarino

also stepped down from the position at the same time. Musk now
serves as the company's owner, chairman, and CTO. ¢

A Brief History of the CEO role

the chairman and chief technology officer for X. @

RETRIEVAL-AUGMENTED GENERATION
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LLMs’ output is challenging to interpret and verify

Why retrieval-based LMs?

Generating text with citations

Input
Datastore +

P S L e
“UTATTANRS ?“t:“.“”” N

~Question

When did the US break away from England?

-Model output
The US took the first step towards gaining independence from

GB when it declared independence on July 2, 1776 (although the
event is now commemorated on July 4, 1776, the date when the
Declaration of Independence was officially adopted by Congress)
[1][2]. The Treaty of Paris was later signed on September 3, 1783,
formally separating the United States from the British Empire [2].

Can trace knowledge source
from retrieval results - better
interpretability & control

wp | Retrieve r—
I | ey [

Corpus

1
X

[1] Decolonization of [2] Decolonization: ...
the Americas: ... in- It was officially adop-
dependence from GB | | ted by Congress on

P

[3] American Revolu-
tion: ... The Treaty of
Paris was signed

September 3, 1783 ...

onJuly2, 1776 ... July 4, 1776 ...

RETRIEVAL-AUGMENTED GENERATION
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LLMs’ output is challenging to interpret and verify

Why retrieval-based LMs?

(2, Create an itinerary for exploring Toronto over a span of two days. O 0o
@ & 5 | a « Day 2: Explore the history and culture of Toronto at the
Royal Ontario Museum, one of the largest and most

comprehensive museums in North America, featuring
and activities to suit different tastes and preferences. Here exhibits on art, natural history, world cultures and more

4
are some suggestions for creating an itinerary for exploring . Then, hop on a ferry to the Toronto Islands, a group
Toronto over two days: of\slands that offer a relaxing escape from the city, with

Toronto is a vibrant and diverse city with many attractions

» Day 1: Start your day with a visit to the CN Tower, the
iconic landmark that offers panoramic views of the city
and beyond ' . You can also experience the thrill of
walking on the glass floor or the EdgeWalk, the world’s

highest hands-free walk Next, head to the nearby St.
Lawrence Market, one of the wor
markets, where you can sample a variety of cuisines an

local specialties * . After lunch, take a stroll along Queen
West, a trendy neighborhood with eclectic shops,

galleries, cafes and street art * . In the evening, enjoy a
show at one of the many theaters or comedy clubs in the 1.cntowerca 2. travel.usnews.com 3. bing.com
Entertainment District, or catch a game at the

Learn more:

4.rom.on.ca 9. tripadvisor.com

Scotiabank Arena if you're a sports fan.




LLMs are shown to easily leak private training data

Why retrieval-based LMs?

Category Count
Prefi US and intcrnational ncws 109
Bl Log files and error reports 79
East Stroudsburg Stroudsburg... ] License, terms of use, copyright notices 54
Lists of named items (games, countries, etc.) 54
¢ Forum or Wiki entry 53
Valid URLs 50
[ GPT-? ] Named individuals (non-news samples only) 46 |
Promotional content (products, subscriptions, etc.) 45
High entropy (UUIDs, base64 data) 35
p l f Contact info (address, email, phone, twitter, cte.) 32}
Memorized text ] . Code 31
Corporation Seabank Centre Configuration files 30
Marine Parade Southport Religious texts 25
Pseudonyms 15
.com Donald Trump tweets and quoles 12
Web forms (menu items, instructions, etc.) 11
Tech news 11
) ’ Lists of numbers (dates, sequences, elc.) 10

Individualization on private data by storing it in the datastore

Carlini, N., et al. (2020). Extracting Training Data from Large Language Models.



https://arxiv.org/abs/2012.07805

LLMs are *large* and expensive to train and run

Why retrieval-based LMs?
r

VS.

Datastore

Long-term goal: can we possibly reduce the training and
inference costs, and scale down the size of LLMs?

e.g., RETRO (Borgeaud et al., 2021): “obtains
comparable performance to GPT-3 on the Pile,
despite using 25x fewer parameters”
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A Retrieval-based LM: Definition

A language model (LM) that uses




ypical LMs
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The capital city of Ontario is
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Retrieval-based LMs
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The capital city of Ontario is Toronto The capital city of Ontario is
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10/2/2025 RETRIEVAL-AUGMENTED GENERATION




Inference

Input

+

hﬂlﬁn ““Q&égéé\\%&\w\@\ \}\\Q&;%Sw;;;gw N
;) \ “\‘\\\\Q‘?&‘“ﬁ& \\\‘2\3\\\\\\\\“\‘@\%
\}%‘&_‘m%\*&\\ \\\“‘\“‘?\\\\\\\ S

\

N\ m&
*&\.\\\\‘“‘““ SRR § N
‘\\\\ V\\\\\w\\\s\%& \\\\“\“\“ %;w

@**\ \. x&),
Y, \ x\"«\\ @M\\@
\\ﬁﬁ\\(‘ @w\\\‘f\\\\\\\\%\\@“

x\\‘% o &\\@\

SR & (& i\‘%\x\\%%\\
w‘ R S‘ aey
X \M& @&«

Datastore

—

Query

!

Index
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Input
Inference: Datastore I

\\\\\\\\m\} R \W}‘“\\\\ NS e

Q\\\“\&. tg;:g\%“‘& m&&‘& = Q u e ry L

2 QQQ“Q\‘&“_\\\Q\Q\\\R\W\W‘@E“& M
3 ‘m “‘\‘\Q.;“s“\&%§\§&§ O \N\}SA\ \

N

PEORE T e

\\V&\\\:\k \\\\\Xi\@‘@&@% 0% %\?
NN
NIRRT

S
N AR )
\“\\\.\\\%\‘\“\X\x\@".@\\\\%% Q‘( N\
D ‘1\}\ %“%&\@\7 \Q’Q
REREIRONR -
0% @N\%‘\\; —p DN EN — & o
R

\Ntf

More recently
people have used

structured data Datastore
Raw text corpus

At least billions~trillions of tokens
Not labeled datasets
Not structured data (knowledge bases)
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Inference: Index

Input
Retrieval input
(not necessarlly mput to the LM) #

=2 NN R D O

N TR, Coniee QORI NEON R

\\\\‘ﬁ\

> QQQQ\_\\““‘Q‘_‘“‘ ‘i‘%@“\\\% \\\\\\\\\‘ D
\\x\\‘\\\ N S
‘?Q\\R-_‘&QS\&‘\“(‘\ m@ﬁ@&\\\w @%@ iy
AR '&«@ SR
L&\ \\\\%\\\\Q\\‘S‘S\g\\%\‘\ x\\\\:\\“X %\%\\\\\%\ ,,,,, \&E\*@f
' \ @“ @@\ @M
z 5\6{‘& & &‘}é@&\;\ @*@*‘\\\\ \\*“’i%«i\\‘
%- Q¥ \1“0%\\& Q\\\\\x &.\\\\\®
\
S

\\\\\Q "\"\ \‘
(,QQ XQ\\\\\ \ \3
@‘%‘% N ‘Q\\ g&\ D fx\\&‘.‘;@\%‘&%@

N N

Datastore
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> Index *

Find a small subset of elements in a datastore
that are the most similar to the query

RETRIEVAL-AUGMENTED GENERATION




Inference: Index

Goal: find a small subset of elements in a datastore that are the most similar to
the query

sim: a similarity score between two pieces of text
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Inference: Index

Goal: find a small subset of elements in a datastore that are the most similar to
the query

sim: a similarity score between two pieces of text

@ # of total docs )
sim(i /) =(t6))« log o2 Remember cosine

C)# of docs containing similarity from our
discussion of word
embeddings _, -

a-b

# of occurrences of inj

sim(i,j) = Encoder(i) - Encoder()

Gq||b
Maps the text into an -dimensional vector ‘Cl| ‘ |
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Inference: Index

Goal: find a small subset of elements in a datastore that are the most similar to
the query

sim: a similarity score between two pieces of text

Can be a totally separate research area
on how to do this fast & accurate

Index:given ¢ ,return argTop-k pSim(g, d) through fast nearest neighbor search

k elements from a datastore
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Software: FAISS, Distributed FAISS, SCaNN, etc...

Method Class name index_factory Main parameters Bytes/vector Exhaustive Comments

Exact Search

IndexFlatL2 "Flat" d 4%d es brute-force
for L2 ¥

Exact Search

Exact Search . :
also for cosine (normalize

for Inner IndexFlatIP "Flat" d 4%d es
ARG - % ¥ vectors beforehand)
Product
Hierarchical
Navigable Small 4%d + X * M %
IndexHNSWFlat "HNSW, Flat" d, M no
World graph 2 x4
exploration \‘
. Takes another index to
Inverted file ) X X
: quantizer, d, assign vectors to inverted
with exact ) . .
ost IndexIVFFlat "IVFx,Flat" nlists , 4%d + 8 no lists. The 8 additional bytes
P e i metric are the vector id that needs
verification
to be stored.
Locality- o .
Szzziltize optimized by using random
% 3 IndexLSH - d, nbits ceil(nbits/8) yes rotation instead of random
Hashing (binary rojections
flat index) proj
Sk 4 and 6 bits per component M
guantizer (SQ) IndexScalarQuantizer "sQ8" d d yes are slso plamentad APP rOX| | | la_te Sea rc h
in flat mode
—m— | (Relatively easy to scale to ~ | B elements)
K "PQx" , ceil(M * nbits
quantizer (PQ) IndexPQ . d, M, nbits yes
2 "PQ"M"x"nbits / 8)
in flat mode
SQfp16:2 * d
IVF and scalar . "IVFx,SQ4" quantizer, d, Qfp = Same as the
uantizer LndextiEscslarGuantizer "IVFx,SQ8" lists , qtype i i 42 IndexScalarQuantizer
4 ! S, (e SQ4: d/2 +8 Ress A
IVFADC (coarse quantizer, d, .
i 5 v ceil(M *
quantizer+PQ IndexIVFPQ "IVFx,PQ"y"x"nbits nlists, M, TR no
on residuals) nbits M M f h .// H h b /
ore INnTo: NtLps: glt ub.com
IVFADC+R quantizer, d, B
same as lists , M,
v ) fEEs | facebookresearch/faiss/wiki
IVFADC with re- IndexIVFPQR "IVFx,PQy+z" nbits , M+M_refine+8 no

ranking based M_refine ,
on codes) nbits_refine



https://github.com/ facebookresearch/faiss/wiki
https://github.com/ facebookresearch/faiss/wiki

Inference: Search

Input

+

S § R N
R DR M U R AN

) S N
b)) A AR ‘;\‘“\\\\““\\m\m\\m\s
b JAS X NAETDURE RS e

ey
‘Q\\E‘&“\}_\\_\Q\\s‘g\%\?\\\ @g@w
h Akt &0
x\@&\\@-}&\s&@%&a ‘
\ X q I

_ O
e d |ndex e @%@j

b

fast nearest
neighbor search

In this tutorial, we assume
we can do it fast &

Datastore accurate Retrieval
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Inference: Search

Input

=P T R B e e R A R
ONRERRE R
) E RAEADS E A R S RN §

: AL SRR R R e

Nt

WM
R
A

Datastore
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Variations of RAG

What's the query &
when do we retrieve? ’&'

Query

l How do we
use retrieval?

e BN B e T R R R e
| \(Q\)\\\g&&k\\&?@““‘“\\\S‘&}\“%?&}X;1““\\\\\@& Sl

£ \\wmm\.@&x
5 ) Q‘?“\_k\\m\m\xss ‘;\\u\\\wxmm\mﬁ\m
2 RIS DR e

TR TR et

N

RN

—— Index

retrieve!?

Datastore
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Variations of RAG

What to retrieve? How to use retrieval? When to retrieve?
Query w/ retrieval
l The capital city of Ontario is Toronto.
g‘@% w/ retrieval w/ r w/r wir w/r wir wir
AN /N /N

Text chunks (passages)?

Tokens? w/ retrieval wir w/r
Something else? The capital city of Ontario is Toronto

10/2/2025 RETRIEVAL-AUGMENTED GENERATION



This is also an exercise for

reading academic papers

I N ‘C‘a SS ACt|V|ty to look for specific details

Skim the paper assigned to you

In your paper, find the answers to these questions

What to How to use When to
~ retrieve? ~ retrieval? ~ retrieve?

Share what you learned with your table

What to retrieve? How to use retrieval? When to retrieve?
Query Input w/ retrieval Once
Don’t submit anything this time! ! (b 3 oo
y g : ‘o'ti‘\\\)' w/ retrieval w/ r w/r w/r ;Y%ywtro ken

RPN

S Intermedial

R __‘}l The capital city of Ontario is Toronto.

Text chunks (passages)? W retrioval E%ﬁ r.y n tlenS

Tokens? Output N\
Something else? The capital city of Ontario is Toronto.
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Answers

_ What do retrieve? How to use retrieval? When to retrieve?
REALM (Guu et al 2020) Text chunks Input layer Once

RETRO (Borgeaud et al. 2022) Text chunks Intermediate layers Every n tokens
kNN-LM (Khandelwal et al. 2020) Tokens Output layer Every token

Every n tokens
FLARE (Jiang et al. 2023) Text chunks Input layer

(adaptive)

All models retrieve from the external text

RETRIEVAL-AUGMENTED GENERATION 40
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Say Anything (2009

User written sentence

Matching sentence

Computer generated sentence

It all started easy enough.

It all started out normal enough.

Got up, had lunch, got ready went to work etc.

But then T noticed something very strange.

Then, as T flipped through the test, T
realized something very strange.

Mr. Sipiera gave me points on the blank page.

Why would he do that? What was he up to?

Why would he do that?

Because he was planning to kill Sonya for her
knowledge of the kidnapping plot.

I decided to get to Sonya first and mun away with her
to a Greek island.

We left pretty much after this and took
a ferry back to Hong Kong island.

Our original plan to go to Lamma island was ditched,
as we had inadvertently spent half the day on Lantau
island.

But we settled for Corfu, which has a beautiful little
hotel on the edge of the old town.

But we settled for the simpler name.

We had dogs (and cats) when I was growing up but
my wife and sons have never had a dog before.

Corfu was full of cats and dogs, and I ended up
having to look at my feet a lot when walking around
town.

and i ended up having to save the day.

It's too long to list the details of the whole operation.

Sonya would take on the secret identity of a scuba
instructor, and I'd be a fisherman.

"Before I even got so far as having a
proper breakdown in realizing that
fantasy is not reality, I found that I
had the secret identity of a beetle."

"But that could have been very useful, right?

It meant we could spend a lot of secret time together
on the jetty beyond the coastline.

She does spend a lot of time at the bar
where they all hang out.

She has told me some of the men she hangs with have
come on to her.

I told her I'd kill them just like that old math teacher.

I told her I'd come help her clean and
whatever else she needs.

Once she's gone. I'm pretty much on my own.

Fishing all day, looking out for the police.

This is bad for the police.

If they stopped to survey the situation they could only
see what was there -- none of the men were armed.

It was a great secret life.

Before neural methods,
retrieval was used for
generating stories

Swanson, R. and Gordon, A. (2009) Open Domain Collaborative Storytelling With Say Anything. Third International Conference on Weblogs and Social Media, San Jose, CA, May 17-

20, 20009.




GROVE (2023

8  OperationStep 1 : One missing background information in the story is how Maggie died and ended up being
> Repository Construction launched back in time. 2 : Maggie died in a car accident and her consciousness was sent back
T AskingWhy Prompting in time due to an experimental technology malfunction. §ll: Maggie worked as a software

engineer at a cutting-edge research facility that was experimenting with time travel technology.
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Zhihua Wen, Zhiliang Tian, Wei Wu, Yuxin Yang, Yanqi Shi, Zhen Huang, and Dongsheng Li. 2023. GROVE: A Retrieval-augmented Complex Story Generation Framework with A
Forest of Evidence. In Findings of the Association for Computational Linguistics: EMINLP 2023, pages 3980—3998, Singapore. Association for Computational Linguistics.



https://aclanthology.org/2023.findings-emnlp.262/
https://aclanthology.org/2023.findings-emnlp.262/
https://aclanthology.org/2023.findings-emnlp.262/
https://aclanthology.org/2023.findings-emnlp.262/

B E RALL (2024) (to be presented on Tuesday)

Player

4—Setting———

——Command—p

Rachel Chambers, Naomi Tack, Eliot Pearson, Lara J. Martin, Francis Ferraro,

2024.

Player
Interface

——Parsed Command—p

4—Knowledge Graph______|

——Command + Knowledge Graph—}p

4 Setting

BERT2BERT

Llama 2+Rag

Games. Wordplay Workshop



https://wordplay-workshop.github.io/wordplay2024/pdfs/21.pdf
https://wordplay-workshop.github.io/wordplay2024/pdfs/21.pdf
https://wordplay-workshop.github.io/wordplay2024/pdfs/21.pdf
https://wordplay-workshop.github.io/wordplay2024/pdfs/21.pdf
https://wordplay-workshop.github.io/wordplay2024/pdfs/21.pdf
https://wordplay-workshop.github.io/wordplay2024/pdfs/21.pdf
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