Planning

Lara J. Martin (she/they)

https://laramartin.net/interactive-fiction-class

10/14/2025 PLANNING 1

https://laramartin.net/interactive-fiction-class
https://laramartin.net/interactive-fiction-class
https://laramartin.net/interactive-fiction-class
https://laramartin.net/interactive-fiction-class
https://laramartin.net/interactive-fiction-class

Learning Objectives

Identify the components of a planning problem

Distinguish between search and planning
Determine how planning can be used in IF
Summarize how planning has appeared in story generation through the years

Explore how Theory of Mind can expand narrative planning in the Sabre
planner

10/14/2025 PLANNING 2

Review: Al Agent Definition

Agent: anything that perceives its
environment through sensors, and acts on its
environment through actuators

Sensors

Percept: input at an instant percepts

Percept sequence: history of inputs
actions

Agent function: mapping of percept sequence

to action effectors

Agent program: (concise) implementation of
an agent function

10/14/2025 PLANNING 3

Review:
—ormal Definition of a Search Problem

1. States:asetS 5. Path cost (Performance Measure):

2 Aninitial state s.€ S Must be additive, e.g. sum of distances,
° |
number of actions executed, ...

3. Actions: asetA

c(x,a,y) is the step cost, assumed 20
V s Actions(s) = the set of actions that can

be executed in s ° (where action a goes from state x to
state y)

4. Transition Model: V sV aeActions(s)
6. Goal test: Goal(s)

Result(s, a) — s,
s is a goal state if Goal(s) is true.

s _is called a successor of s . .
' Can be implicit, e.g. checkmate(s)

{s; }U Successors(s;)* = state space

10/14/2025

PLANNING 4

Review: Generalized tree search

function TREE-SEARCH(problem, strategy) return a solution or failure

Initialize frontier to the initial state of the problem :
The strategy determines
do search process!
if the frontier is empty then return failure
choose leaf node for expansion according to & remove from frontier
if node contains goal state then return solution
else expand the node and add resulting nodes to the frontier

PLANNING 5

10/14/2025

Review: Search Strategies

Several classic search algorithms differ only by the order of how they expand
their search trees

You can implement them by using different queue data structures

o Depth-first search = LIFO queue
o Breadth-first search = FIFO queue
o Greedy best-first search or A* search = Priority queue

10/14/2025 PLANNING 6

Classical Planning

The task of finding a sequence of action to accomplish a goal in a deterministic,
fully observable, discrete, static environment.

In environments that are

If an environment is:

- Deterministic - Nondeterministic or

- Fully observable - Partially observable

The solution must recommend different
future actions depending on the what

percepts it receives. This could be in the
form of a branching strategy.

The solution to any problem in such
an environment is a fixed sequence

10/14/2025 PLANNING

Representation Language

Planning Domain Definition Language (PDDL) express actions as a schema

(Variables
(direction
Action name player)
location location)
(Preconditions
Preconditions and effects are ()
conjunctions of logical ()
sentences ((not ()
() Effects
(not ()

) : :
These logical sentences are literals -

positive or negated atomic sentences

State Representation

In PDDL, a state is represented as a conjunction of logical sentences that are
ground atomic fluents. PDDL uses database semantics.

Ground means Atomic sentences
Fluent means an aspect

they contain no contain just a
y €€) Jt- of the world that can
variables single predicate :
change over time
Action Schema | (:action .
has variables (?dir - direction ?p - player ?I1 - location ?I2 - location) ®* C(Closed world assumption:
((at ?p ?11) (connected ?11 ?dir ?12) (not (blocked ?11 ?dir ?12))) :
land (ot 70 712) (not (at 2p 711} .any fluent not mentioned
) is false.
State Representation [(.o,ccied) * Unique names are
arguments are constants | (connected) distinct.
fluents may change over time | (connected
(connected)
(at)

10/14/2025 PLANNING 9

Successor States

A ground action is applicable if if every positive literal in the precondition is
true, and every negative literal in the precondition is false

(
()
Ground Action (and () ()
no variables (not ()
(and () (not ())
)
() Negative literals in the effects
3 () are kept in a delete list DEL(),
Initial State | () . .
() and positive literals are kept
() in an add list ADD()
Result)
New state reflecting the effect)
of applying the ground action

P, S, S g p—

10/14/2025

Domain

(define (domain)
(:requirements :strips :typing)
(:types)
(:action

(?dir - direction ?p - player
?|1 - location ?12 - location)
((at ?p ?I1)
(connected ?11 ?dir ?12)
((blocked ?11 ?dir ?12)))
((at ?p ?12) ((at ?p ?11)))

)
(:action
(?item - item
?p - player
?|1 - location)
((at ?p ?I1)
(at ?item ?11))
((inventory ?p ?item)
((at ?item ?11)))
)
)

Set of Action
Schema

Problem

(define (problem
(:domain)

(:objects
- player

)

(:init
(at)
(connected
(connected
(connected
(connected

)

(:goal ((at
)

)
- location
- direction
Initial State
)
)
)
)
) (sitting))

Goal
10/14/2025 PLANNING 11

Algorithms for Classical Planning

We can apply BFS to the initial state through possible states looking for a goal.

An advantage of the declarative representation of action schemas is that we can
also search backwards.

Start with a goal and work backwards towards the initial state.

Why work
backwards?

In our Action Castle example, this would help us with the
branching problem that the drop action introduced. If we
work backwards from the goal, then we realize that we don’t
ever need to drop an item for the correct solution.

10/14/2025 PLANNING 12

Forward State-Space Search for Planning

Ground action
with no variables

At(Player, Fishing Pond)

Go South At(Pole, Cottage)

Go North

At(Player, Garden Path)

At(Pole Cottage)

Go(Player, Cottage, Out, Fishing Pond) At(Player, Garden Path)

At(Pole, Cottage)

At(Player, Cottage)

At(Pole, Cottage)

At(Player, Cottage) At(Player, Fishing Pond)

Inventory(Pole) Inventory(Pole)

Actions must be

applicable. o
At(Player, Garden Path) At(Player, Fishing Pond)

Inventory(Pole) Ilnven’f[oryﬁlF:’plﬁ))
nventory(Fis

10/14/2025 PLANNING

Start with the

Backward State-Space Search for Planning goal, work
: backwards to
(aka Regression Search) initial state

At(Player, Cottage) At(Player, Garden Path) Pick relevant
Inventory(Pole) HasPond(Fishing Pond) -
Connected(GP, South, FP) actions.
Inventory(Pole)

At(Player, ?loc) Inventory(Fish)
Get Pole HasPond(?loc)

At(Player, Cottage) Inventory(Pole)
At(Pole, Cottage)

Given a goal g and action a, the regression from g to a gives
a state g’ description whose literals are given by:
POS(g') = (POS(g)-ADD(a)) U POS(Preconditions(a))
NEG(g') = (NEG(g)-DEL(a)) U NEG(Preconditions(a))

Negative literals in the Positive literals in

mmmmmmm cffectsare keptina g the effects are
delete list DEL kept in an ADD list

Heuristics for Planning

Neither forward nor backward search is efficient without good heuristics.

In search, a heuristic function h(s) estimates the distance from a state to the
goal.

Admissible heuristics never over-estimate the true distance and can be used
with A* search to find optimal solutions.

Admissible heuristics can be derived from a relaxed problem (approximation)
that is easier to solve.

The “ignore preconditions” heuristic relaxes the problem.

PLANNING 15

10/14/2025

Hierarchical Planning

Instead of using atomic actions, we can define actions at higher levels of
abstraction.

Hierarchical decomposition organizes actions into high-level functions,
composed of more fine-grained function, composed of atomic actions.

Plan out sequence of high-level actions, reclusively refine the plan until we’ve
got atomic actions.

Tricky to ensure that the
resulting plan is optimal.

PLANNING 16

10/14/2025

Review: Vacuum World
(Search)

Initial state

Solution:

A path from the initial
state to a goal state

Goal states

10/14/2025

Think-Pair-Share: Search vs Planning

What are some of the differences between search vs planning?

At(Player, Fishing Pond)
Go South At(Pole, Cottage)
e - Go North
At(Player, Garden Path) [
Go(Player, Cottage, Out, Fishing Pond) « At(Pole Cottage) At(Player, Garden Path)
At(Pole, Cottage)
At(Player, Cotiage) [l
At(Pole, Cottage)
Get F'nh;.\“
At(Player, Cottage) Go South At(Player, Fishing Pond)
Inventory(Pole) e Inventory(Pole)

T~ GoOut_~ - ~___ Fish
At(Player, Garden Path) At(Player, Fishing Pond)
Inventory(Pole) Inventory(Pole)

Inventory(Fish)

Planning Search

10/14/2025 Planning

Planning and Games

Planning can be used for Al characters

In our current text adventure games, all of the non-player characters are boring!

Why doesn’t the princess try to escape the tower and claim the throne herself?
Why doesn’t the troll go hunt for food and eat us or the guard?
Why is the ghost of the king stuck in the dungeon?

We could give each of them goals and have them try to plan out and play the
game alongside the player.

(Teaser for
HW 3)

10/14/2025 PLANNING

Generating Puzzles

In HW1, we were able to generate descriptions of locations and items.

Could we use planning to automatically generate:
1. Puzzles?

2. Special actions?

Let's say a player needs a sword and we decide to make the game more challenging by not putting
one anywhere in the game.

Could we generate an action that results in the creation of a sword?
Action: forge a sword
Effects: a sword is created

Preconditions: molten metal, a cast of a sword, an anvil, a hammer

10/14/2025

PLANNING 21

Planning and Stories

UNIVERSE

Table 2
A typical UNIVERSE plot fragment.

PLOT FRAGMENT: forced-marriage
CHARACTERS: 7him ?her ?husband ?parent
CONSTRAINTS: (has-husband ?her) {the husband character}
(has-parent ?husband) {the parent character)
(< (trait-value ?parent ‘niceness) —5)
(female-adult ?her)
(male-adult ?him)
GOALS: (churn ?him ?her) {prevent them from being happy)}
SUBGOALS: (do-threaten ?parent Ther “forget it”) {threaten ?her}

(dump-lover ?her 7him) {have ?her dump ?him}

(worry-about ?him) {have someone worry about ?him}
(together * ?him) {get ?him involved with someone else}
(eliminate ?parent) {get rid of ?parent (breaking threat)}
(do-divorce Thusband ?her) {end the unhappy marriage}

(or (churn ?him ?her) {either keep churning or}

(together ?her Thim)) (try and get ?her and ?him back together}

10/14/2025 M. Lebowitz, “Story-Telling as Planning and Learning,” Poetics, vol. 14, no. 6, pp. 483-502, Dec. 1985, doi: 10.1016/0304-422X(85)90015-4.

https://doi.org/10.1016/0304-422X(85)90015-4
https://doi.org/10.1016/0304-422X(85)90015-4
https://doi.org/10.1016/0304-422X(85)90015-4
https://doi.org/10.1016/0304-422X(85)90015-4
https://doi.org/10.1016/0304-422X(85)90015-4

UNIVERSE (with multiple goals)

*(tell ’ (((churn JOSHUA FRAN)) ((together JOSHUA VALERIE))))

working on goal =-- CHURN JOSHUA FRAN
-- using plan ACCIDENT-BREAKUP P1/FRAN P2/JOSHUA THIRD-PARTY/VALERIE

working on goal == DO-DISABLE FRAN
-- using plan DISABLE PERSON/FRAN

>>> FRAN has a spinal injury and is paralyzed
>>> FRAN doesn’t want to ruin JOSHUA’s life
>>> FRAN pretends to blame JOSHUA for her malady

working on goal -- DUMP-LOVER FRAN JOSHUA
== using plan BREAK-UP DUMPER/FRAN DUMPED/JOSHUA

>>> FRAN tells JOSHUA she doesn’'t love him

working on goal -- TOGETHER JOSHUA VALERIE

[again, the story continues unhappily for almost all concerned]
Figure 3: A multi-goal story

10/14/2025 M. Lebowitz, “Planning Stories,” Annual Conference of the Cognitive Science Society (CogSci), vol. 1, no. 2.2, pp. 234-242, Jul.

1987, Available: https://cognitivesciencesociety.or

https://cognitivesciencesociety.org/wp-content/uploads/2019/01/cogsci_9.pdf
https://cognitivesciencesociety.org/wp-content/uploads/2019/01/cogsci_9.pdf
https://cognitivesciencesociety.org/wp-content/uploads/2019/01/cogsci_9.pdf

Partial Order Causal Link (POCL) planning

Conflict
POCL Figure 1: Example CPOCL Problem and Domain Figure 2: Example CPOCL Plan

Initial: single (A) Asingle (B) Asingle (C) A
loves (A, C)Adintends (A, married(A,C)) A
loves (B,C)Adintends (B, married(B,C)) Ahas (B,R)

Initial State

Goal: married(A,C)
-
lose (?p, i) find(?p, ?i) o lose (B,R)
A: @ A: @ g i
P: has(?p,?i) P: lost(?i) ~
E: lost(?i)A—has(7p, 71) E: has(?p, ?i) A—lost (?1) E'
give (?p1,?p2, ?i) marry (b, 2g) l'“l find (A, R)
A: ?pl 7p2 A: ?b 2g |
P: has({?pl, ?i} P: lowves(?b,?g) Aloves(?g, ?b) : . C . .
E: has(?p2,?i)A—has(?pl,?i) Asingle (?b) Asingle (2q) ¢ A married (A, C) B: married(B.,C) :
E: married(?b, ?g)A * t
—single (?b) A—single (2g) | prrnrnne ey
L propose (A, C) ! propose(B,C)
propose (?b, ?q) L i a s EEEEEEEEEEEgEEEEEEEEEEEEEEEEE
A: 7b e, * ; A
P: loves (?b, ?g) Ahas (?b,R) "
E: loves(?g, ?b) Alntends (?g,married(?b, ?qg)) J‘ el "*
marry (&, C) marry (B, C)
C: married(A,C) O married(B,C)

Goal State

Key I:lexecuteclEtep £t non-executed step

intention frame —gm causallink ... conflict

10/14/2025 S. G. Ware and R. M. Young, “CPOCL: A Narrative Planner Supporting Conflict,” AAAI Conference on Artificial Intelligence

and Interactive Digital Entertainment (AlIDE), vol. 7, no. 1, pp. 97-102, 2011, doi: 10.1609/aiide.v7i1.12428.

https://doi.org/10.1609/aiide.v7i1.12428

Sabre

A Narrative Planner Supporting
Intention and Deep Theory of Mind

Stephen G. Ware
Cory Siler

/ I lt\T iilllf rative Iﬂ:& University of
ntelligence
[5 LAB KentUCky

B 0 e
GLAIVE

NARRATIVE PLANNER

SABRE

a NARRATIVE PLANNER

Narrative Planning

L
A single decision maker n @ @

creates the appearance
of a multi-agent system.

g
g7 I

Intentions and Beliefs

C: Classical
Actions are
actually possible.

Intentions and Beliefs

C: Classical
Actions are
actually possible.

I: Intention
Actions can achieve
agent’s goal.

* Riedl and Young, “Narrative planning: balancing plot and character,” in JAIR 2010
» Teutenberg and Porteous, “Efficient intent-based narrative generation...,” in AAMAS 2013
* Ware and Young, “Glaive: a state-space narrative planner...,” in AIIDE 2014

Intentions and Beliefs

C: Classical
Actions are
actually possible.

I: Intention
Actions can increase
agent’s utility.

Intentions and Beliefs

—_

C: Classical B: Belief

Actions are Agent believes the
actually possible. actions are possible.

I: Intention
Actions can increase
agent’s utility.

L —

* Eger and Martens, “Character beliefs in story generation,” INT 2017
* Thorne and Young, “Generating stories ... by modeling false character beliefs,” in INT 2017
 Shirvani, Ware, and Farrell, “A possible worlds model of belief...,” in AIIDE 2017

Intentions and Beliefs

—_

C: Classical B: Belief

Actions are Agent believes the
actually possible. actions are possible.

InB: Believable
Agent believes actions can
increase utility.

I: Intention
Increases utility

* Shirvani, Farrell, and Ware, “Combining intentionality and belief...,” in AIIDE 2018

Syntax and Features

Fluents

at(Tom) =

Helmert, “The Fast Downward planning system,” in JAIR 2006

Fluents

at(Tom) = Cottage

Helmert, “The Fast Downward planning system,” in JAIR 2006

Fluents

at(Tom) = Cottage

path(Cottage, Market) = T

Fluents

at(Tom) = Cottage
path(Cottage, Market) = T

wealth(Merchant) = 3

Fluents

at(Tom) = Cottage
path(Cottage, Market) = T

wealth(Merchant) = 3

believes(Tom,wealth(Merchant)) = 2

Fluents

at(Tom) = Cottage
path(Cottage, Market) = T
wealth(Merchant) = 3

believes(Tom,wealth(Merchant)) = 2

believes(Merchant, believes(Tom,wealth(Merchant))) = 3

Theory of Mind

* Arbitrarily deep
what x believes y believes z believes...

* No uncertainty

Everyone commits to beliefs, which can be wrong.

Other Syntactical Features

* Negation

* Disjunction
e Conditional Effects

* First Order Quantifiers

Actions

buy(Tom, Potion, Merchant, Market)

Actions

a: buy(Tom, Potion, Merchant, Market)

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a):

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market A
at(Potion) = Merchant

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market A
at(Potion) = Merchant A wealth(Tom) = 1

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market N at(Merchant) = Market A
at(Potion) = Merchant A wealth(Tom) > 1

EFF(a):

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market A
at(Potion) = Merchant A wealth(Tom) > 1
eFF(a): at(Potion) = Tom

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market A
at(Potion) = Merchant A wealth(Tom) > 1
eFF(a): at(Potion) = Tom A wealth(Merchant) += 1

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market A
at(Potion) = Merchant A wealth(Tom) > 1
eFF(a): at(Potion) = Tom A wealth(Merchant) += 1 A
wealth(Tom) —= 1

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market A
at(Potion) = Merchant A wealth(Tom) > 1
EFF(a): at(Potion) = Tom A wealth(Merchant) += 1 A
wealth(Tom) —= 1
coN(a):

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market A
at(Potion) = Merchant A wealth(Tom) > 1
EFF(a): at(Potion) = Tom A wealth(Merchant) += 1 A
wealth(Tom) —= 1
coN(a): {Tom, Merchant}

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market A
at(Potion) = Merchant A wealth(Tom) > 1
EFF(a): at(Potion) = Tom A wealth(Merchant) += 1 A
wealth(Tom) —= 1
coN(a): {Tom, Merchant}
oBs(a, ¢):

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market A
at(Potion) = Merchant A wealth(Tom) > 1
EFF(a): at(Potion) = Tom A wealth(Merchant) += 1 A
wealth(Tom) —= 1
coN(a): {Tom, Merchant}
oBs(a,c): at(c) = Market

Triggers

t: see(Tom,Merchant, Market)
PRE(L):

EFF(t):

Triggers

t: see(Tom,Merchant, Market)
PRE(t): at(Tom) = Market

EFF(t):

Triggers

t: see(Tom,Merchant, Market)
PRE(t): at(Tom) = Market A at(Merchant) = Market

EFF(t):

Triggers

t: see(Tom,Merchant, Market)
PRE(t): at(Tom) = Market A at(Merchant) = Market A
believes(Tom, at(Merchant)) + Market

EFF(t):

Triggers

t: see(Tom,Merchant, Market)
PRE(t): at(Tom) = Market A at(Merchant) = Market A
believes(Tom, at(Merchant)) + Market

eFF(E): believes(Tom, at(Merchant)) = Market

Pre-Processing

* Make action and trigger results explicit

e Detect and remove immutable fluents

* Detect and remove impossible actions and triggers

Results of an Event

After Tom buys the potion from the merchant...

* Tom has the potion.
* Tom knows he has the potion.
* The merchant knows Tom has the potion.

* Tom know that the merchant knows that he has the potion.

e .. and so on.

Example Trigger: Two-Way Paths

t: add_path(y, x)
PRE(t) path(x,y) = T Apath(y,x) = 1L
EFF(t): path(y,x) =T

Example Trigger: Two-Way Paths

t: add_path(Market, Cottage)
PRE(t): path(Cottage, Market) = T A
path(Market, Cottage) = L

EFF(t): path(Market, Cottage) = -

Example Action: Walk

a: walk(Tom, Market, Cottage)
PRE(a): at(Tom) = Market A
path(Market, Cottage) = T
EFF(a): at(Tom) = Cottage
coN(a): {Tom}
oBs(a,c): at(c) = Market vV at(c) = Cottage

Example Action: Walk

a: walk(Tom, Market, Cottage)
PRE(a): at(Tom) = Market A
path(Market, Cottage) = T
EFF(a): at(Tom) = Cottage
coN(a): {Tom}
oBs(a,c): at(c) = Market vV at(c) = Cottage

Example Action: Walk

a: walk(Tom, Market, Cottage)
PRE(a): at(Tom) = Market
eFF(a): at(Tom) = Cottage
coN(a): {Tom}
oBs(a,c): at(c) = Market vV at(c) = Cottage

Search

Algorithm 1 The Sabre algorithm

1: Let A be the set of all actions defined in the domain.
2; SABRE(Cauthors Sos U 80)
3: function SABRE(c, 1, 7, S)

4. Input: character c, start state r, plan 7, current state s
3 if u(c, s) > u(c,r) and 7 is non-redundant then
6: return
i Choose an action a € A such that s = PRE(a).
8: for all ¢’ € CON(a) such that ¢’ # ¢ do
9: Let state b = a(a, B(c, 3)).
10: if b 1s undefined then return failure.
i else if SABRE(C', b, (), b) fails then return failure.

1.2; return SABRE(c, 7, mw U a, a(a, s))

s \I7I\I7INI/

T

B =1

AN

%‘,{mnnu

| walk to the market.

| walk to the market. I buy the potion

from the merchant.

€

v
So Tom walks to the market. e S \/

Falty

| buy the potion
from the merchant.

| walk to the market.

Tom buys the potion
from me.

| walk to the market. I buy the potion

from the merchant.

€

v
So Tom walks to the market. e S \/

Falty

| buy the potion
from the merchant.

@

| walk to the market. | walk home.

DU
€

v
So Tom walks to the market. e S \/

Falty

| buy the potion
from the merchant.

%

| walk to the market. | walk home.

DU
€

v
So Tom walks to the market. e S \/

E(®

| buy the potion
from the merchant.

%

| walk to the market. | walk home.

Tom buys the potion
from the merchant.

Tom buys the potion
from the merchozg

Tom buys the potion

from me.

Tom buys the potion
from the merchant.

Tom buys the potion
from the merchant.

| buy the potion

from the merchant.

Tom buys the potion
from the merchant.

| buy the potion

from the merchant.

Tom buys the potion
from the merchant.

Tom buys the potion
from the merchant.

e
e FE

Tom buys the potion

Tom walks home.
from the merchant.

So Tom walks to the market. S1

| walk home.

Tom buys the potion
from the merchant.

Evaluation

Comparing Sabre to Other Planners

Sabre

Comparing Sabre to Other Planners

Sabre
Glaive / J X

X

Riedl and Young, “Narrative planning: balancing plot and character,” in JAIR 2010

Ware and Young, “CPOCL: a narrative planner supporting conflict,” in AIIDE 2011
Teutenberg and Porteous, “Efficient intent-based narrative generation...,” in AAMAS 2013
Ware and Young, “Glaive: a state-space narrative planner...,” in AIIDE 2014

Comparing Sabre to Other Planners

Sabre
Glaive / J X x
HeadSpace V4 X ~J X

* Thorne and Young, “Generating stories ... by modeling false character beliefs,” in INT 2017

Comparing Sabre to Other Planners

Sabre

Glaive / J x
HeadSpace V4 X ~J X
IMPRACTical V4 V4 ~J X

» Teutenberg and Porteous, “Incorporating global and local knowledge...,” in AAMAS 2015

Comparing Sabre to Other Planners

Sabre

Glaive / J

HeadSpace V4 X

IMPRACTical v 4 V4

Thespian X 4 V4

* Ryan, Summerville, Mateas, and Wardrip-Fruin, “Toward characters who observe...,” in EXAG 2015
* Si and Marsella, “Encoding Theory of Mind in character design...,” in AHCI 2014

Comparing Sabre to Other Planners

Sabre

Glaive / J X
HeadSpace V4 X ~J
IMPRACTical v 4 V4 ~J
Thespian X 4 4
Ostari V4 V4 V4

» Eger and Martens, “Practical specification of belief manipulation in games,” in AIIDE 2017

Test Problems

e Raiders

* Space

* Ware and Young, “Glaive: a state-space narrative planner...,” in AIIDE 2014

Test Problems

* Raiders
* Space
e Treasure

e [.overs
e Hubris

* Farrell and Ware, “Narrative planning for belief and intention recognition,” in AIIDE 2020
 Shirvani, Farrell, and Ware, “Combining intentionality and belief ...,” in AIIDE 2018
* Christensen, Nelson, and Cardona-Rivera, “Using domain compilation to add belief ...,” in AIIDE 2020

Test Problems

* Raiders
* Space
e Treasure

e [.overs
e Hubris
* BearBirdjr

* Sack, “Micro-TaleSpin, a story generator,” 1992
* Meehan, “TALE-SPIN, an interactive program that writes stories,” in AAAI 1977

Test Problems

* Raiders

* Space

* Treasure

* Lovers
 Hubris

* BearBirdjr

e Grandma

* Ware, Garcia, Shirvani, and Farrell, “Multi-agent experience management ...,” in AIIDE 2019

R
m

Raiders 17,815

Space 192 6 ms
Treasure 288 1 ms
Lovers 5,198,414 40.3 m
Hubris 831 47 ms
BearBirdjr 34,084,068 14.0 m

Grandma 105,178,466 6.2 h

Conclusion

Limitations

* No true uncertainty

 h™ heuristic often performs poorly!

1. Bonet and Geffner, “Planning as heuristic search,” in AI, 2001

Future Work

 More search methods

Algorithm 1 The Sabre algorithm

1: Let A be the set of all actions defined in the domain.

2. SABRE(Cauthors S0, @, 50)

3: function SABRE(c, r, 7,)

4 Input: character ¢, start state r, plan 7, current state s
5: if u(c, s) > u(e,r) and 7 is non-redundant then

6 return

7 :

8

PRE(q)
for all ¢’ € CON(a) such that ¢’ # c do

Let state b = a(a, 3(c, s)).
10: if b is undefined then return failure.
11: else if SABRE(c, b, (), b) fails then return failure.
12: SABRE(C, T, T O, (A, 3))

Future Work

 More search methods

Algorithm 1 The Sabre algorithm

Algorithm 2 The Sabre algorithm

: Let A be the set of all actions defined in the domain. 1: Let A be the set of all actions defined in the domain.
SABRE(Cauthor, 50, 0, s0) 2: SABRE(Cauthors S0, 0, 80)
. function SABRE(c, r, 7, S) 3: function SABRE(c, 1, 7,)
Input: character ¢, start state r, plan 7, current state s 4. Input: character c, start state r, plan 7, current state s
if u(c, s) > u(e,r) and 7 is non-redundant then 5: if u(c, s) > u(e, r) and 7 is non-redundant then
return 6: return 7
Choose an action a € A such that s = PRE(a). 7 Choose an action a. € A such that s = PRE(q)
for all ¢’ € CON(a) such that ¢’ # c do 8: if SABRE(c, 7, ™ U a, a(a, s)) fails then return failure.

Let state b = a(a, 3(c, s)).

if b is undefined then return failure.
else if SABRE(c, b, (), b) fails then return fai

retur{ SABRE(c, 7, ™ U a, a(a, 8))

for all ¢’ € CON(a) such that ¢" # ¢ do
Let state b = «(a, B(c’, s)).
if b is undefined then return failure.
12: else if SABRE(c’, b, (), b) fails then return failure.

[3: return T

Future Work

 More search methods
e Better heuristics

* Agent emotions and personalities!

1. Shirvani and Ware, “A formalization of emotional planning for strong-story systems,” in AIIDE 2020

W] 3
TR

SABRE

http://cs.uky.edu/~sgware/projects/sabre

]

[=];
Tk

I 1D

Background Music: https://www.bensound. com

	Default Section
	Slide 1: Planning
	Slide 2: Learning Objectives
	Slide 3: Review: AI Agent Definition
	Slide 4: Review: Formal Definition of a Search Problem
	Slide 5: Review: Generalized tree search
	Slide 6: Review: Search Strategies
	Slide 7: Classical Planning
	Slide 8: Representation Language
	Slide 9: State Representation
	Slide 10: Successor States
	Slide 11: Domain
	Slide 12: Algorithms for Classical Planning
	Slide 13: Forward State-Space Search for Planning
	Slide 14: Backward State-Space Search for Planning (aka Regression Search)
	Slide 15: Heuristics for Planning
	Slide 16: Hierarchical Planning
	Slide 17
	Slide 18: Think-Pair-Share: Search vs Planning
	Slide 19: Planning and Games
	Slide 20: Planning can be used for AI characters
	Slide 21: Generating Puzzles
	Slide 22: Planning and Stories
	Slide 23: UNIVERSE
	Slide 24: UNIVERSE (with multiple goals)
	Slide 25: Partial Order Causal Link (POCL) planning

