Planning

Lara J. Martin (she/they)

https://laramartin.net/interactive-fiction-class

10/16/2025 PLANNING + NEURAL PLANNING 1

https://laramartin.net/interactive-fiction-class
https://laramartin.net/interactive-fiction-class
https://laramartin.net/interactive-fiction-class
https://laramartin.net/interactive-fiction-class
https://laramartin.net/interactive-fiction-class

Learning Objectives

Identify the components of a planning problem and how they are used in PDDL

Distinguish between search and planning (and MDPs)
Discover limitations and benefits of planning for storytelling

Assess how LLMs and planning can work together for storytelling

10/16/2025 PLANNING + NEURAL PLANNING 2

Review:
—ormal Definition of a Search Problem

1. States:asetS 5. Path cost (Performance Measure):
2 Aninitial state s.€ S Must be additive, e.g. sum of distances,
° |

. number of actions executed, ...

3. Actions:asetA
c(x,a,y) is the step cost, assumed 20
Vv s Actions(s) = the set of actions that can
be executed in s. ° (where action a goes from state x to
state y)

4. Transition Model: V sV aeActions(s)

Result(s, a) — s, 6. Goal test: Goal(s)

s is a goal state if Goal(s) is true.

s _is called a successor of s . .
' Can be implicit, e.g. checkmate(s)

{s; }U Successors(s;)* = state space

10/16/2025

PLANNING + NEURAL PLANNING 3

Planning

Planning: The process of searching for a plan
> This is why we can use algorithms like BFS to find plans

o “Plain” state-based search is useful when we just want to get to the goal (efficiently);
planning is useful when we care about the path

> What we think of as “planning” is a combination of search and logic

Plan: The result of planning; a sequence of steps from the initial state to a goal
state

Policy: A collection of transition functions (Result(s, a) - s,) that tell the agent
what action it should take for a given state
> This will become more relevant when talking about reinforcement learning

PLANNING + NEURAL PLANNING 4

10/16/2025

Classical Planning

Classical planning: The task of finding a sequence of action to accomplish a goal
in an environment that:
* |s deterministic

Is fully observable

Contains a single agent

Has a single initial state

Is discrete

The solution to any problem in such an enwronment is a fixed sequence of
actions.

10/16/2025 PLANNING + NEURAL PLANNING 5

More complicated planning

In environments that are Nondeterministic actions

e Nondeterministic —=——————— (with assigned probabilities)
turn classical planning

* Partially observable problems into an MDP!
* Etc.

The solution must recommend different future actions depending on
the what percepts it receives. This could be in the form of a

branching strategy.

PLANNING + NEURAL PLANNING 6

10/16/2025

Planning languages

PDDL (Planning Domain Definition Language)

STRIPS (Stanford Research Institute Problem Solver)
ADL (Action Description Language)

10/16/2025 PLANNING + NEURAL PLANNING 7

We’ll focus on PDDL

PDDL breaks the planning problem into a domain and a problem description

The domain is consistent across problems (e.g., the description of the
environment)

The problem defines what is going to be planned over

10/16/2025 PLANNING + NEURAL PLANNING 8

Domain

Parameters
(variables)

Preconditions

Effects

10/16/2025

))

) Domain name

Object Types (can

be hierarch

T
direction player location location)

()
)
()

Logical statements

item player location)

()
)

ical)

~—— Actions

) —

PLANNING + NEURAL PLANNING

(() Problem name
Problem | |
(What domain to
Objects - player use

(the atoms)

- location
- direction

) Initial State

S e e e —
e

((and {) () Goal

10/16/2025

State Representation

In PDDL, a state is represented as a conjunction of logical sentences that are
ground atomic fluents.

Ground means

they contain no Atomic sentences
variables logical statements

that can’t be

broken down

Fluent means an aspect
of the world that can
change over time

E.g.,
(connected)

We make the closed world assumption: any fluent not mentioned is false

10/16/2025 PLANNING + NEURAL PLANNING 11

Forward State-Space Search for Planning

Ground action
with no variables

At(Player, Fishing Pond)

Go South At(Pole, Cottage)

Go North

At(Player, Garden Path)

At(Pole Cottage)

Go(Player, Cottage, Out, Fishing Pond) At(Player, Garden Path)

At(Pole, Cottage)

At(Player, Cottage)

At(Pole, Cottage)

At(Player, Cottage) At(Player, Fishing Pond)

Inventory(Pole) Inventory(Pole)

Actions must be

applicable. o
At(Player, Garden Path) At(Player, Fishing Pond)

Inventory(Pole) Ilnven’f[oryﬁlF:’plﬁ))
nventory(Fis

10/16/2025 PLANNING + NEURAL PLANNING

Start with the

Backward State-Space Search for Planning goal, work
: backwards to
(aka Regression Search) initial state

At(Player, Cottage) At(Player, Garden Path) Pick relevant
Inventory(Pole) HasPond(Fishing Pond) -
Connected(GP, South, FP) actions.
Inventory(Pole)

At(Player, ?loc) Inventory(Fish)
Get Pole HasPond(?loc)

At(Player, Cottage) Inventory(Pole)
At(Pole, Cottage)

Given a goal g and action a, the regression from g to a gives
a state g’ description whose literals are given by:
POS(g') = (POS(g)-ADD(a)) U POS(Preconditions(a))
NEG(g') = (NEG(g)-DEL(a)) U NEG(Preconditions(a))

Negative literals in the Positive literals in

mmmmmmm cffectsare keptina g the effects are
delete list DEL kept in an ADD list

Backward State-Space Search for Planning
(aka Regression Search)

Given a goal g and action a, the regression from g to a gives
a state g’ description whose literals are given by:
POS(g') = (POS(g)-ADD(a)) U POS(Preconditions(a))
NEG(g') = (NEG(g)-DEL(a)) U NEG(Preconditions(a))

Or simply:
g' = (g - effects(a)) U Preconditions(a)

Partial-Order Planning

Keep a partial order of steps and only commit to an ordering when forced to

For example:
° Go north

> Pick up sword; Pick up lantern
° Go west

10/16/2025 PLANNING + NEURAL PLANNING

Review:
Partial Order Causal Link (POCL) planning

Figure 1: Example CPOCL Problem and Domain Figure 2: Example CPOCL Plan

Initial: single (A) Asingle (B) Asingle (C) A
loves (A, C)Adintends (A, married(A,C)) A
loves (B,C)Adintends (B, married(B,C)) Ahas (B,R)

Initial State

Goal: married(A,C)
-
lose (?p, i) find(?p, ?i) o lose (B,R)
A: @ A: @ g i
P: has(?p,?i) P: lost(?i) ~
E: lost(?i)A—has(7p, 71) E: has(?p, ?i) A—lost (?1) E'
give (?p1,?p2, ?i) marry (b, 2g) l'“l find (A, R)
A: ?pl 7p2 A: ?b 2g |
P: has({?pl, ?i} P: lowves(?b,?g) Aloves(?g, ?b) : . C . .
E: has(?p2,?i)A—has(?pl,?i) Asingle (?b) Asingle (2q) ¢ A married (A, C) B: married(B.,C) :
E: married(?b, ?g)A * t
—single (?b) A—single (2g) | R ¥
L propose (A, C) ! propose(B,C) i
propose (?b, ?q) L i a s EEEEEEEEEEEgEEEEEEEEEEEEEEEEE
A: 7b e, -
P: loves (?b, ?g) Ahas (?b,R) " .d"'j
- loves(?g,?b}Aintends(?g,married(?b,?g)} J srrr ey
marry (&, C) marry (B, C)
C: married(A,C) O married(B,C)

Goal State

Key I:lexecuteclEtep £t non-executed step

intention frame —gm causallink ... conflict

10/16/2025 S. G. Ware and R. M. Young, “CPOCL: A Narrative Planner Supporting Conflict,” AAAI Conference on Artificial Intelligence

and Interactive Digital Entertainment (AlIDE), vol. 7, no. 1, pp. 97-102, 2011, doi: 10.1609/aiide.v7i1.12428.

https://doi.org/10.1609/aiide.v7i1.12428

Think-Pair-Share

What are some limitations of planning for storytelling?

What are some benefits?

10/16/2025 PLANNING + NEURAL PLANNING 17

Planning for IF

Distribution CONSTITUENT
of Plot Nodes _ Yes
Constituent? +| Al Move
User Update Match Crowd-sourced
Input — SF:ate = Against Nol ISIS Sentence

Plot Graph E cention? Update Update

None P) State State

Generated

EXCEPTIONAL

Yes Sentence
Planner Al Move

Lara J. Martin, Brent Harrison, Mark O. Riedl, Improvisational Computational Storytelling in Open Worlds

https://laramartin.net/lab/pub/Martin_ICIDS2016.pdf

Neural Planning

10/16/2025 PLANNING + NEURAL PLANNING 19

Types of Neural Planning

Generation of planning language code
° To be run through planner

PDDLGO

) e ™ Iterative creation of PDDL problem

JAIE Problem File
| Observation J—— Goal states 1B Treat as partially-observed

|
|

m i Keep regenerating until plan succeeds
|
|
h 4 | |
[Plan J i i
rm— | |
.

|

Trv sub- 1
X __ITry sub-goal |

predicted

ﬁ]}; LLM
: solver

% [Observation } _____

T
>
—
L0

Li Zhang, Peter Jansen, Tianyi Zhang, Peter Clark, Chris Callison-Burch, and Niket Tandon. 2024. PDDLEGO: Iterative Planning in Textual Environments. In Proceedings of the 13th Joint Conference on Lexical 21

and Computational Semantics (*SEM 2024), pages 212—221, Mexico City, Mexico. Association for Computational Linguistics.

https://aclanthology.org/2024.starsem-1.17/

Types of Neural Planning

Generation of planning language code
° To be run through planner

Generation of planning-esque components

10/16/2025 PLANNING + NEURAL PLANNING 22

Neural Story Planning

Algorithm 1: Neural Plot Planner i1

g Generates preconditions for characters
1: Input: ending event sentence g; Initial conditions 1.
2: Initialize a plan P + ; Initialize queue + {g}. ° [tems needed
3: while queue # () do .
4. Let event +— pop(queue) ° Locatlo ns
5: Let context < sequence of events collecled by running a breadth-first

o

search from event to g. Item states

6: Let A + all satisfied preconditions
o

7. Let" + generate preconds(event) for each character in event CO nteXt (H OW)
8: if adding any precondition in I" creates a cycle then o | ntera CtiO ns W|t h ot h ers
9: remove event from P.
10: I' +unsatisfied preconditions due to removing event. o Reasons
11: foreachc € I"do
12: if ¢ € I or ¢ meets conditions for not being expanded then
13: P« P U {nil % event} 5 Dangling precondition Partial-order-planning—inspired
14: else if there exists a precondition ¢’ € A that is similar to ¢ then .
15: event’ < event that satisfies ¢’ ge ne rat 1on
16: P + P U {event’ = event} B> Reuse precondition
17: else
18: event’ + generate event(c, context)
19: P « P U {event’ S event} > Satisfy with new event
20): queue +— queue U {event’}

Anbang Ye, Christopher Zhang Cui, Taiwei Shi and Mark Riedl. 2023. Neural Story Planning. In Proceedings of the AAAI-23 Workshop on Creative Al Across Modalities.

https://openreview.net/forum?id=cLBEKIu5WZK

https://openreview.net/forum?id=cLBEKlu5WZK

World States
Story Domain

Narrative
StoryVerse .
Action Sequence
PLAN — P AN
GENERATOR s REVIEWER

Feedback
Final Character
Action Sequence
CHARACTERS CHARACTER SIMULATOR INITIALIZES THE STATE ACT1 ACT 3 THE END STATE IS REACHED, SIMULATION CONTINUES
ol " 4 [Ishould head to the bank to find some SOME CHARACTER GOT INTO AN ACCIDENT [DOVE] GOT INTO A DIFFERENT ACCIDENT ¥ 4 Now that I've had a bit of an
; - o = o e
E = food and maybe meet other creatures. ' 42 [see some delicious leaves F; I should move closer to the 2. adventure and was saved by the dove,
“ It’s always nice to socialize and share y . across the brook. I should @l brook. I might get a better I'should go to the oak tree to find
the latest news. go there to eat. shot at my target there. some food. It's safer there.
MoveTo(Bank) MoveTo(Brook) MoveTo(Brook) MoveTo(DakTree)

0 I feel like visiting the bank Py~ Ohnol The edgeis very 5 There's the dove! Saving 3 1 Now that the ant is safe, I should
today. It's always nice to meet slippery! I'm falling into the ant. It's distracted. - check on the oak tree. It's a good
new friends, and maybe I'll see the water! Now it's my chance. place to rest and maybe I'll find
the ant there. more friends there.

SlipIntolWater() TryToKill(Dove)
MoveTo(Bank) MoveTo(DakTree)
ACT2 ACT 4
1 should head to the bank. It's a good SOME CHARACTER SAVED [ANT] [ANT] SAVED [DOVE] 5 The oak tree next to the brook could
spot to find targets. I might find some 307 1should go to the brook. QI 1 see the hunter aiming at (Bl be a promising spot to find game.
animals there. Being close to water e Maybe I can find the ant Y. thedove. I mustdo Plus, there's a dove there. Maybe I can
ACTION SCHEMA could lead to more opportunities. there and ensure its safe. “ something quickly. learn more and find an opportunity.
MoveTo(X) TryToKill(X) MoveTo(Bank) MoveTo(Brook) Think(...) MoveTo(OakTree)
SlipIntoWater() Kill(Xx)
DrownToDeath() Think(x) 5.' I'see the ant struggling in P < IfIbite the hunter, maybe I
Save(X) the water. I must save it "« can distract him and save
before it's too late. “ the dove.
Save(Ant) TryToKill(Dove)

Figure 2: Two example story domains - The Ville (top) and Ant & Dove (bottom) - together with instantiated versions of the
four abstract acts from Figure 1. Note that the text for narrations, dialogs, and monologues is all generated by LLMs.

Yi Wang, Qian Zhou, and David Ledo. 2024. StoryVerse: Towards Co-authoring Dynamic Plot with LLM-based Character Simulation via Narrative Planning. In Proceedings of the 19th

International Conference on the Foundations of Digital Games (FDG '24). Association for Computing Machinery, New York, NY, USA, Article 55, 1-4.

Character
Action Sequence

e ® SIMULATED
@ GAME ENVIRONMENT

Observation

https://dl.acm.org/doi/10.1145/3649921.3656987

Types of Neural Planning

Generation of planning language code
° To be run through planner

Generation of planning-esque components

B1: Input S B3: Reranking (§3.2)
Use of LLM as informal planner gy Hostapary O carts g sim(sy. g) = 03
. Y v k - cai(s), &) sim(s;, g,) = 0.6
o lee the procedures Work we IOOked at - - §;: Clean the floor s,: Make food cat(s, g3)4-_’5im(s1 2 _ |
P ’ .8 =01
&> Deep cllean the floor Eoh y : :
{ { 1 e
*. Pick up clothes --- §3: Vacuum B4: Output
J— S ' Host a party
B2: Candidate retrieval (§3.7) |

| ' ! }
G: goal collection 81. " Clean the floor Make food
Host a party \ & 1—1—1 5
- Deep clean the floor s 2l m Pick up clothes Vacuum
Vacuum | ¥°5.
. . ; 33. f,. P 9 g g
| S:step collection . e b4
3 Clean the floor §3.1 | l—i‘:l srtg, l‘l‘l ;rh
Make food
Power on sl «H m l_h m i

(Zhou et al., ACL 2022)

https://aclanthology.org/2022.acl-long.214/
https://aclanthology.org/2022.acl-long.214/
https://aclanthology.org/2022.acl-long.214/

Types of Neural Planning

Generation of planning language code
° To be run through planner

Generation of planning-esque components

Use of LLM as informal planner ~

° Like the procedures work we looked at| {"role": "system”, "content”: "# You are a helpful fiction writer assistant."},
{"role": "user"”, "content”: f"{plot}\n

o QOr using techniques like CoT Summarize the plot above into a plot tree of

{'at most 6' if num_nodes == '' else num_nodes}

nodes with each node containing the state and goal of {char_name}, and the key
decision that propels the story forward. Each edge should contain a 1ist of
events that lead {char_name} to the state of next node. Also, Given the same
state and goal of {char_name}, imagine an alternate decision that would have led
{char_name} to a different storyline. Output in JSON format with schema:
{JSON_SCHEMA}. Make sure that all important plot points are included in
'edgeEvents' but not in 'state'"

Table 5: Prompt for generating a tree from the plot (plot-to-tree).

Huang, R., Martin, L.J., & Callison-Burch C. (2025). WHAT-IF: Exploring Branching Narratives by Meta-Prompting Large Language Models. Wordplay: Where

Language Meets Games Workshop at EMNLP 2025.

https://arxiv.org/abs/2412.10582

Types of Neural Planning

Generation of planning language code
° To be run through planner

Generation of planning-esque components

Use of LLM as informal planner
° Like the procedures work we looked at
o Or using techniques like CoT
> Or guided/hierarchical generation like Plan & Write

Dynamic Storyline | needed — money — computer — bought — happy
- Story John needed a computer for his birthday. He worked hard to earn money. John was able to buy his
computer. He went to the store and bought a computer. John was happy with his new computer.
Static Storyline | computer — slow — work — day — buy
) Story I have an old computer. It was very slow. | tried to work on 1t but it wouldn't work. One day, 1

decided to buy a new one. | bought a new computer .

Yao, L., Peng, N., Weischedel, R., Knight, K., Zhao, D., & Yan, R. (2019). Plan-And-Write: Towards Better Automatic Storytelling. AAAI Conference on Artificial

Intelligence (AAAI), 33(1), 7378-7385.

https://aaai.org/ojs/index.php/AAAI/article/view/4726

	Default Section
	Slide 1: Planning
	Slide 2: Learning Objectives
	Slide 3: Review: Formal Definition of a Search Problem
	Slide 4: Planning
	Slide 5: Classical Planning
	Slide 6: More complicated planning
	Slide 7: Planning languages
	Slide 8: We’ll focus on PDDL
	Slide 9: Domain
	Slide 10: Problem
	Slide 11: State Representation
	Slide 12: Forward State-Space Search for Planning
	Slide 13: Backward State-Space Search for Planning (aka Regression Search)
	Slide 14: Backward State-Space Search for Planning (aka Regression Search)
	Slide 15: Partial-Order Planning
	Slide 16: Review: Partial Order Causal Link (POCL) planning
	Slide 17: Think-Pair-Share
	Slide 18: Planning for IF
	Slide 19: Neural Planning
	Slide 20: Types of Neural Planning
	Slide 21: PDDLGO
	Slide 22: Types of Neural Planning
	Slide 23: Neural Story Planning
	Slide 24: StoryVerse
	Slide 25: Types of Neural Planning
	Slide 26: Types of Neural Planning
	Slide 27: Types of Neural Planning

