Neurosymbolic Knowledge Bases

Lara J. Martin (she/they)

https://laramartin.net/interactive-fiction-class

Modified from slides from the <u>ACL 2020 Commonsense Tutorial</u> by Yejin Choi, Vered Shwartz, Maarten Sap, Antoine Bosselut, and Dan Roth

Learning Objectives

Define what neurosymbolic methods are

Follow examples of integrated and post-hoc knowledge base integration

Compare GPT-3-era neurosymbolic systems to modern neural systems

Review: Desirable properties for a commonsense resource

COVERAGE USEFUL

Large scale High quality knowledge

Diverse knowledge types Usable in downstream tasks

Multiple resources tackle different knowledge types

Review: Eliciting commonsense from humans

EXPERTS CREATE KNOWLEDGE BASE

Advantages:

- Quality guaranteed
- Can use complex representations (e.g., CycL, LISP)

Drawbacks:

- Time cost
- Training users

OpenCyc 4.0 (Lenat, 2012)

WordNet (Miller et al., 1990)

NON-EXPERTS WRITE KNOWLEDGE IN NATURAL LANGUAGE PHRASES

Natural language

- Accessible to non-experts
- Different phrasings allow for more nuanced knowledge

Fast and scalable collection

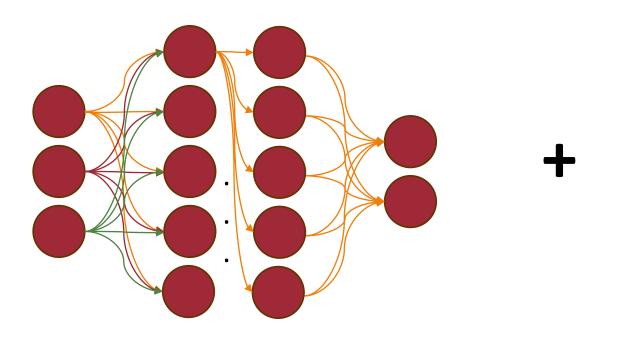
- Crowdsourcing
- Games with a purpose

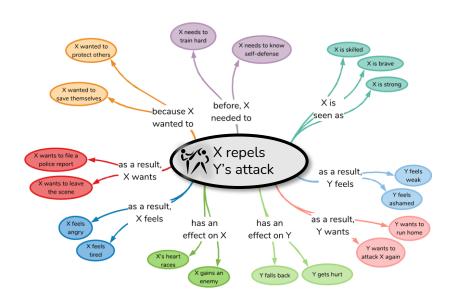
ATOMIC (Sap et al., 2019)

ConceptNet 5.5 (Speer et al., 2017)

Neurosymbolic Methods

The combination of neural networks ("neuro") and older, symbolic AI methods





M. Sap et al., "ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning," AAAI Conference on Artificial Intelligence (AAAI), vol. 33, no. 1, pp. 3027–3035, 2019, doi: 10.1609/aaai.v33i01.33013027.

Why combine them?

NEURAL NETWORKS

Statistical patterns over data

Easy to generate new text from

Need a lot of data to train (and might need to be labeled)

Hard to control

Examples: sequence-to-sequence networks, transformers (LLMs)

SYMBOLIC METHODS

Structured information

Easy for people to understand (interpretable)

Hard to make

Need experts or a lot of time

Limited set of information

Examples: knowledge bases, planning domains/problems, scripts

Ways of combining them

During training

Such as in reinforcement learning or retrieval-augmented generation (RAG)

After training

Like a symbolic "wrapper" – helps validate what the NN is doing

Others??

Ways of combining them

During training

Such as in reinforcement learning or retrieval-augmented generation (RAG)

After training

Like a symbolic "wrapper" – helps validate what the NN is doing

Others??

Adding neural networks to knowledge bases

Katrina had the financial means to afford a new car while Monica did not, since _____ had a high paying job.

WINOGRANDE: An Adversarial Winograd Schema Challenge at Scale. Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. AAAI 2020.

Neural Architecture

[CLS] Katrina had the financial means to afford a new car while Monica did not, since [SEP] Katrina had a high paying job.

[CLS] Katrina had the financial means to afford a new car while Monica did not, since [SEP] Monica had a high paying job.

0.51

0.49

Masked Language Models

Sentence:

Katrina had the financial means to afford a new car while Monica did not, since [MASK] had a high paying job.

Predictions:

11.8% ←

8.8% She

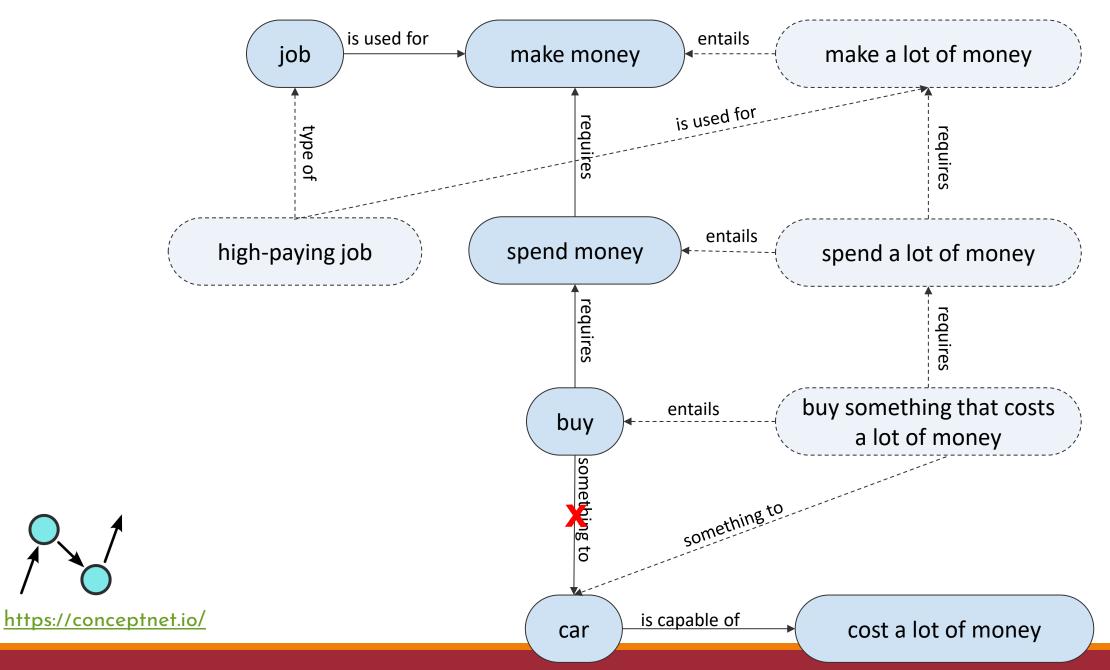
6.3%

6.2% **So**

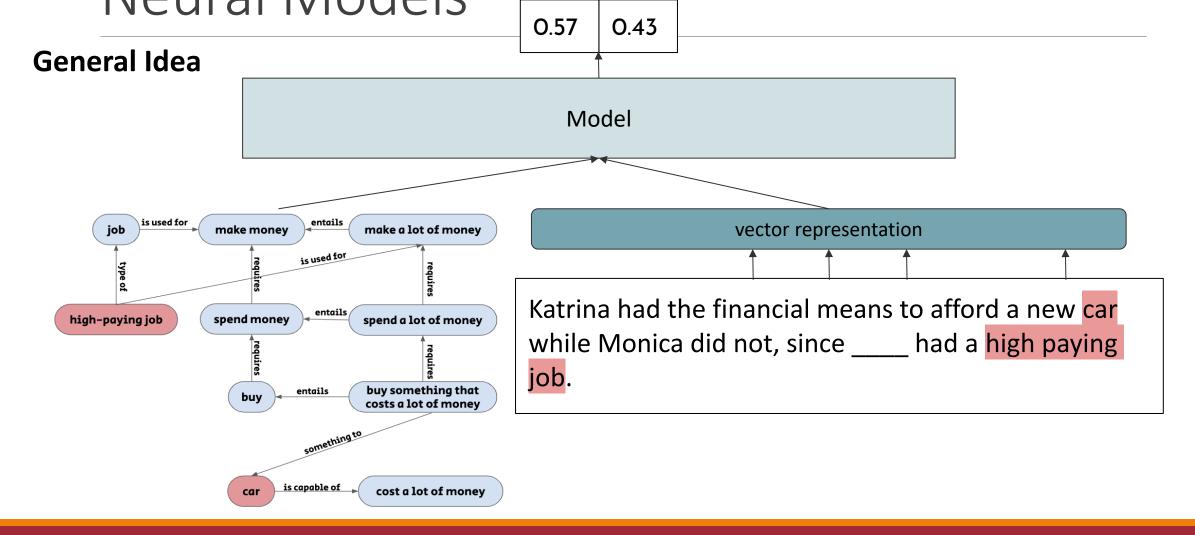
5.2% Monica

← Undo

https://demo.allennlp.org/masked-lm



Incorporating External Knowledge into Neural Models

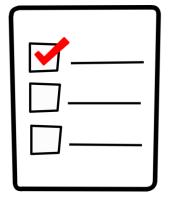


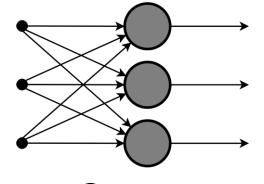
Incorporating External Knowledge into Neural Models

Recipe

Task

Story ending, Machine Comprehension Social common sense NLI

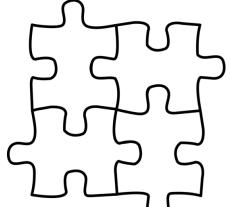




Neural Component

Pre/post pretrained language models

Knowledge bases, extracted from text, hand-crafted rules



Combination Method

Attention, pruning, word embeddings, multi-task learning

Story Cloze Test

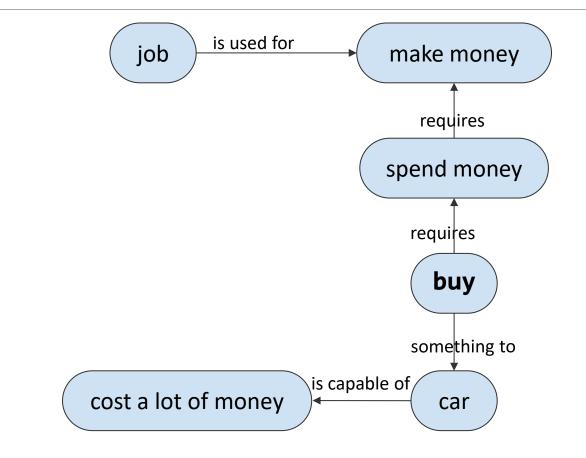
Agatha had always wanted pet birds.
So one day she purchased two pet finches.
Soon she couldn't stand their constant noise.
And even worse was their constant mess.

Agatha decided to buy two more. (Wrong)
Agatha decided to return them. (Right)

Task

A Corpus and Cloze Evaluation for Deeper Understanding of Commonsense Stories. *Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vanderwende, Pushmeet Kohli, and James Allen.* NAACL 2016.

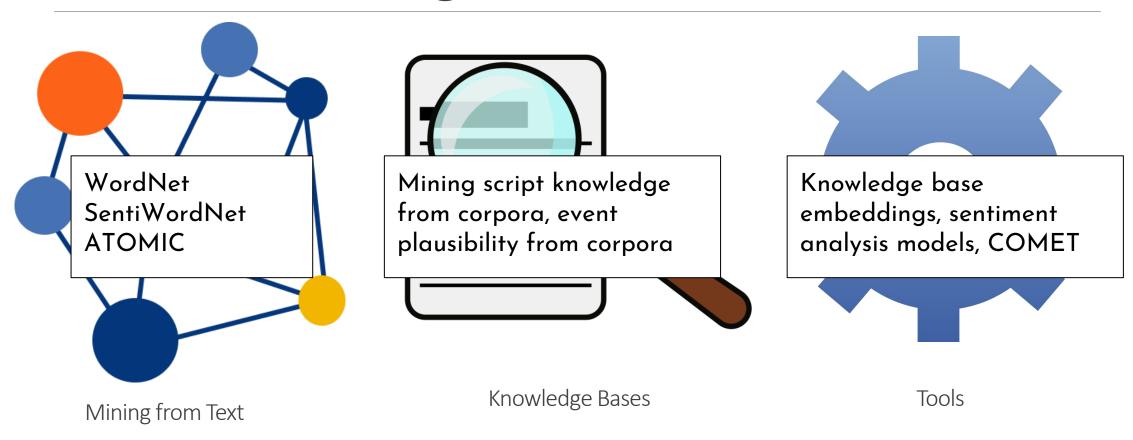
ConceptNet /



Source (Source)

Conceptnet 5.5: An open multilingual graph of general knowledge. Robyn Speer, Joshua Chin, and Catherine Havasi. AAAI 2017.

Other Knowledge Sources

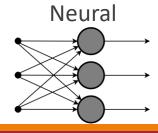


Neural Component

[CLS] Katrina had the financial means to afford a new car while Monica did not, since [SEP] Katrina had a high paying job.

[CLS] Katrina had the financial means to afford a new car while Monica did not, since [SEP] Monica had a high paying job.

0.49



COMET's Combination Method

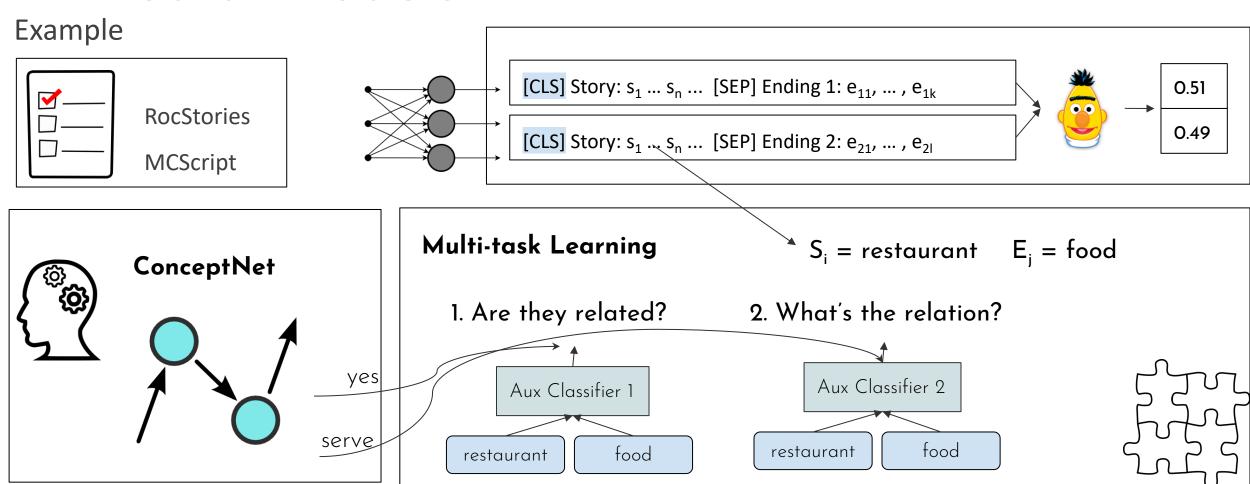
Incorporate into scoring function

Symbolic → vector representation

Multi-task learning

(This was before we had very large LMs)

Incorporating External Knowledge into Neural Models



Incorporating Commonsense Reading Comprehension with Multi-task Learning. Jiangnan Xia, Chen Wu, and Ming Yan. CIKM 2019.

Review: Limitations

• Not 100% accurate person factual world knowledge in KBs

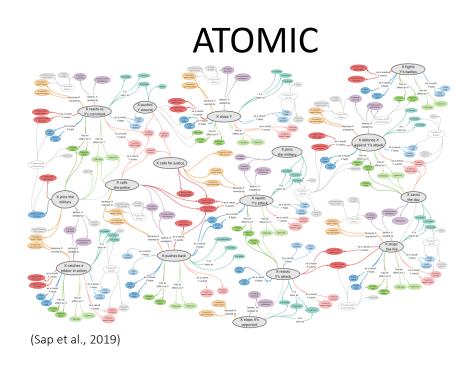
• Easy to incorporate simple resources with stationary facts (ConceptNet) but they are limited in expressiveness:

gentleman

restaurant

11/4/2025 NEUROSYMBOLIC KNOWLEDGE BASES 22

Situations rarely found as-is in commonsense knowledge graphs

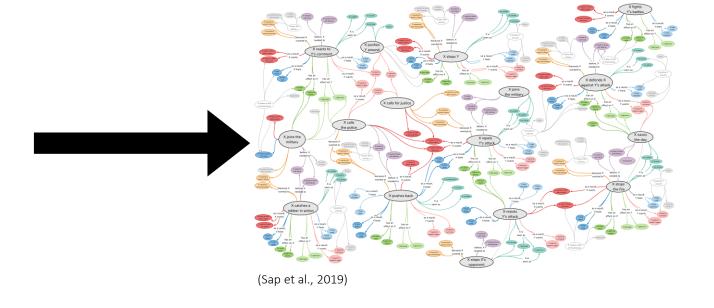


(X goes to the mall, Effect on X, buys clothes)

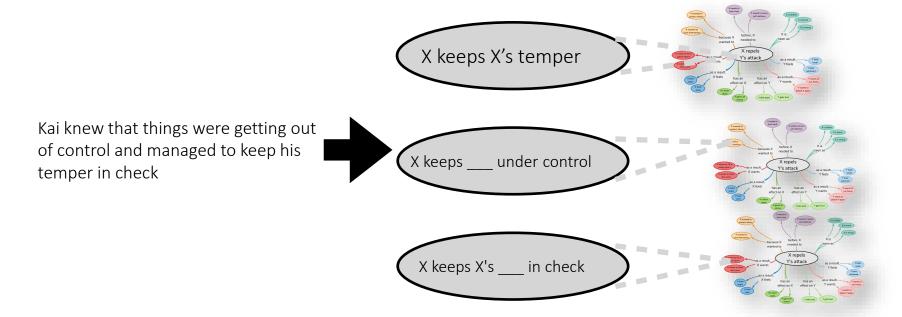
(X goes the mall, Perception of X, rich)

(X gives Y some money, Reaction of Y, grateful)

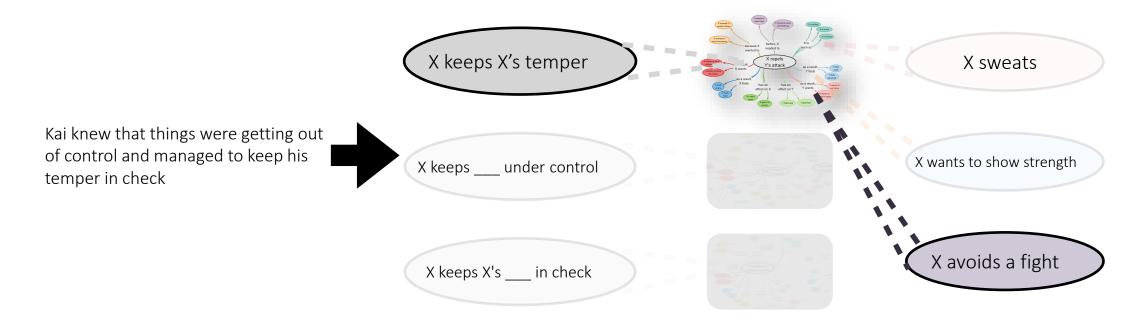
Kai knew that things were getting out of control and managed to keep his temper in check



- Situations rarely found as-is in commonsense knowledge graphs
- Connecting to knowledge graphs can yield incorrect nodes



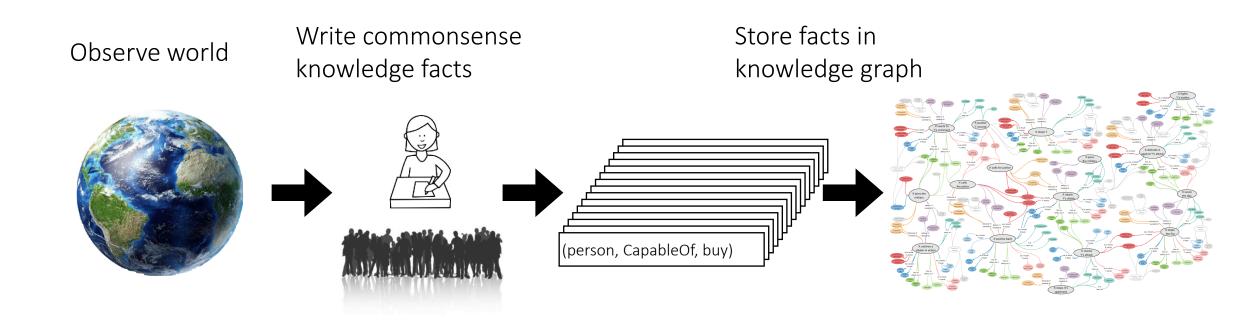
- Situations rarely found as-is in commonsense knowledge graphs
- Connecting to knowledge graphs can yield incorrect nodes
- Suitable nodes are often uncontextualized



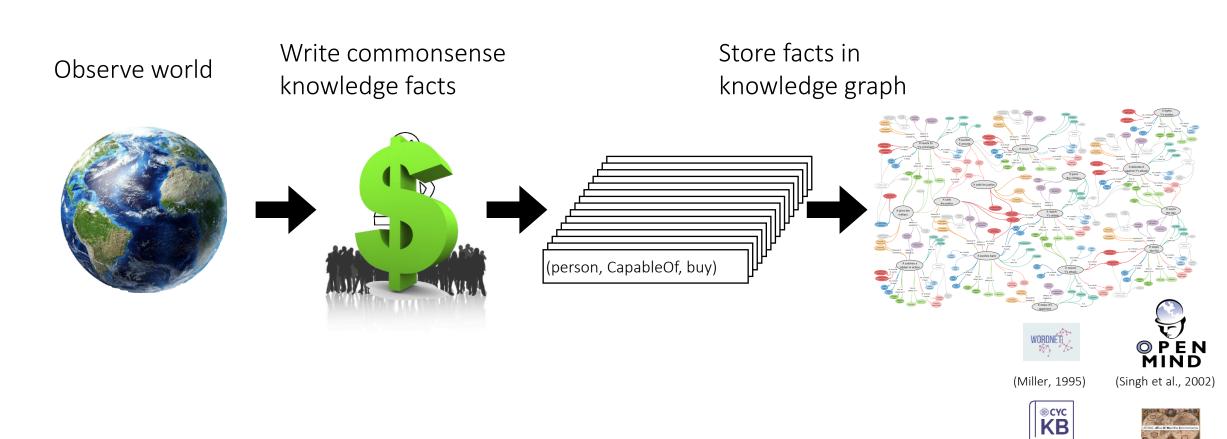
Challenge

How do we provide machines with large-scale commonsense knowledge?

Constructing Knowledge Graphs



Constructing Knowledge Graphs



11/4/2025 NEUROSYMBOLIC KNOWLEDGE BASES 29

(Lenat, 1995)

(Sap et al., 2019)

Challenges of Prior Approaches

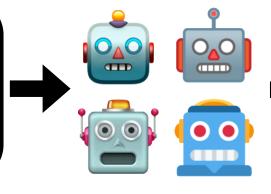
Commonsense knowledge is immeasurably vast, making it impossible to manually enumerate

Constructing Knowledge Graphs Automatically

Gather Textual Corpus

John went to the grocery store to buy some steaks. He was going to prepare dinner for his daughter's birthday. She was turning 5 and would be starting elementary school soon.

Automatically extract knowledge

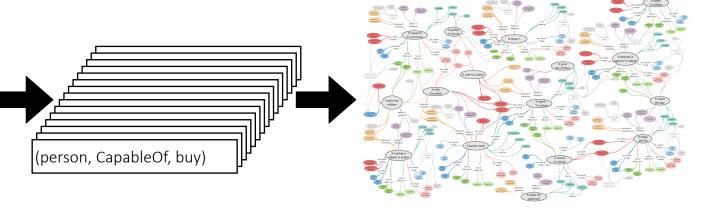


(Schubert, 2002)

(Banko et al., 2007)

(Zhang et al., 2020)

Store in knowledge graph



(Speer et al., 2017)

Webchild

IIIDII nov planek institut

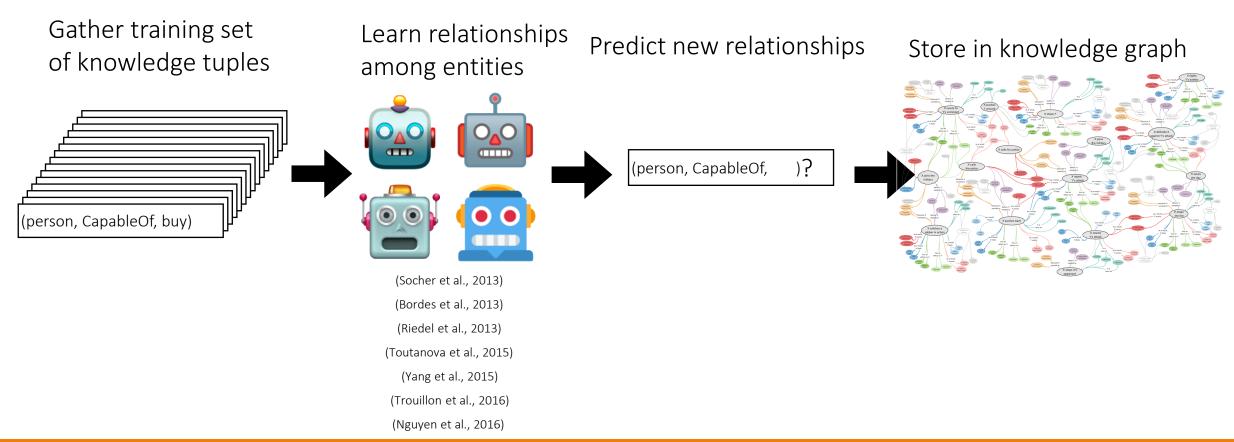
(Tandon et al., 2019)

Challenges of Prior Approaches

Commonsense knowledge is immeasurably vast, making it impossible to manually enumerate

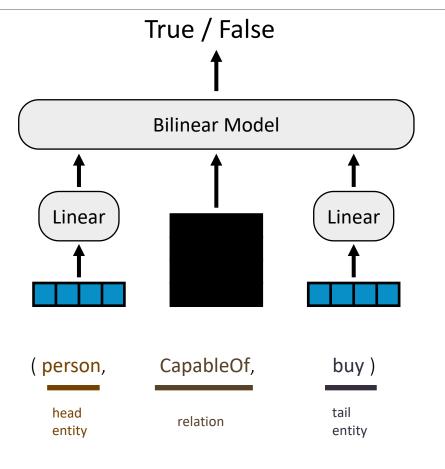
Commonsense knowledge is often implicit, and often can't be directly extracted from text

Knowledge Base Completion



(Dettmers et al., 2018)

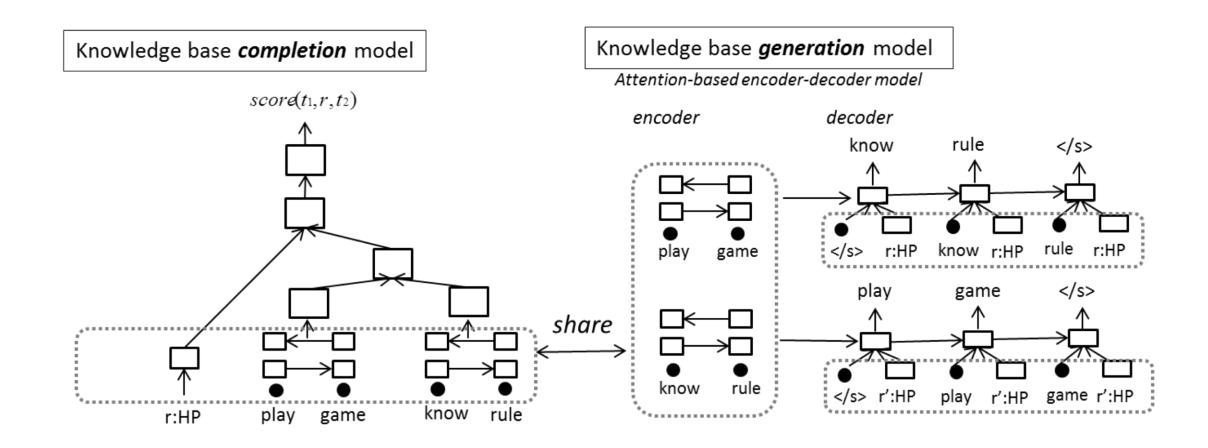
Commonsense Knowledge Base Completion



Only high confidence predictions are validated

Li et al., 2016 Jastrzebski et al., 2018

Commonsense Knowledge Base Completion and Generation!



35

Challenges of Prior Approaches

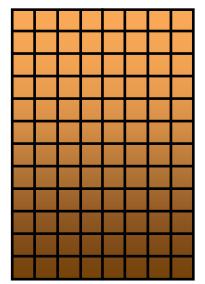
Commonsense knowledge is immeasurably vast, making it impossible to manually enumerate

Commonsense knowledge is often implicit, and often can't be directly extracted from text

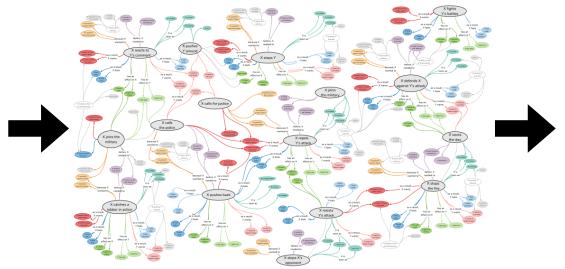
Commonsense knowledge resources are quite sparse, making them difficult to extend by only learning from examples

Solution Outline

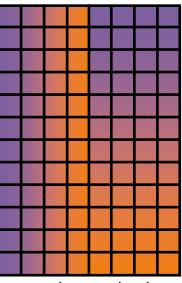
Leverage manually curated commonsense knowledge resources Learn from the examples to induce new relationships Scale up using language resources



Learn word embeddings from language corpus

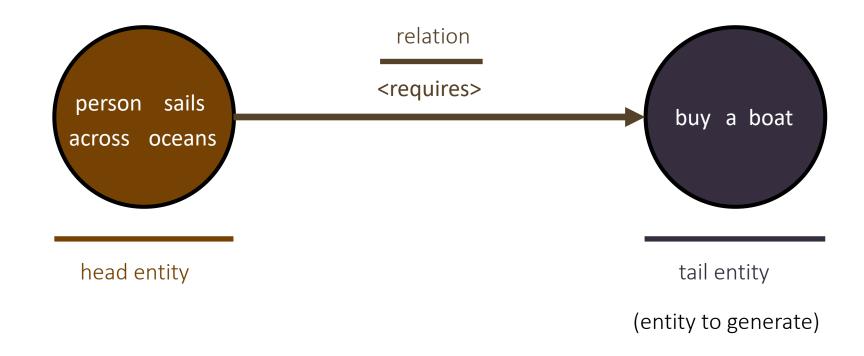


Retrofit word embeddings on semantic resource



Learn knowledgeaware embeddings

Structure of Knowledge Tuple



Learning Structure of Knowledge

Given a seed entity and a relation, learn to generate the target entity

 $\mathcal{L} = -\sum \log P(\textit{target words}|\textit{seed words, relation})$

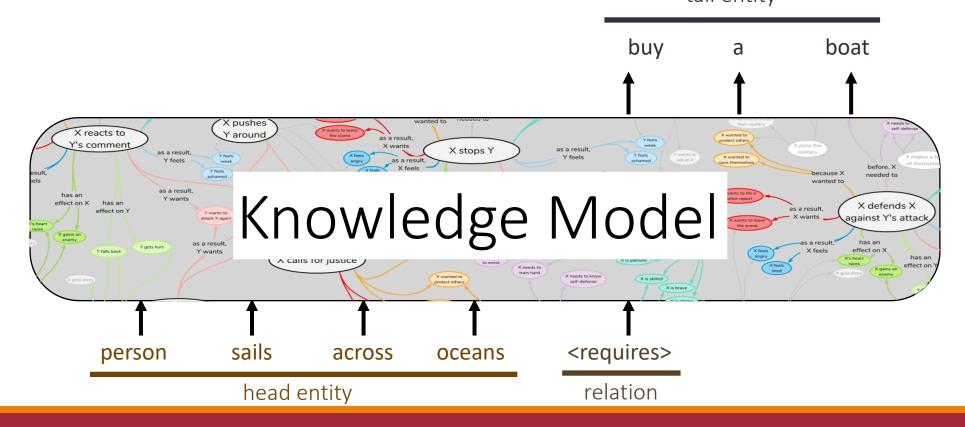
tail entity

buy boat sails <requires> person across oceans head entity relation

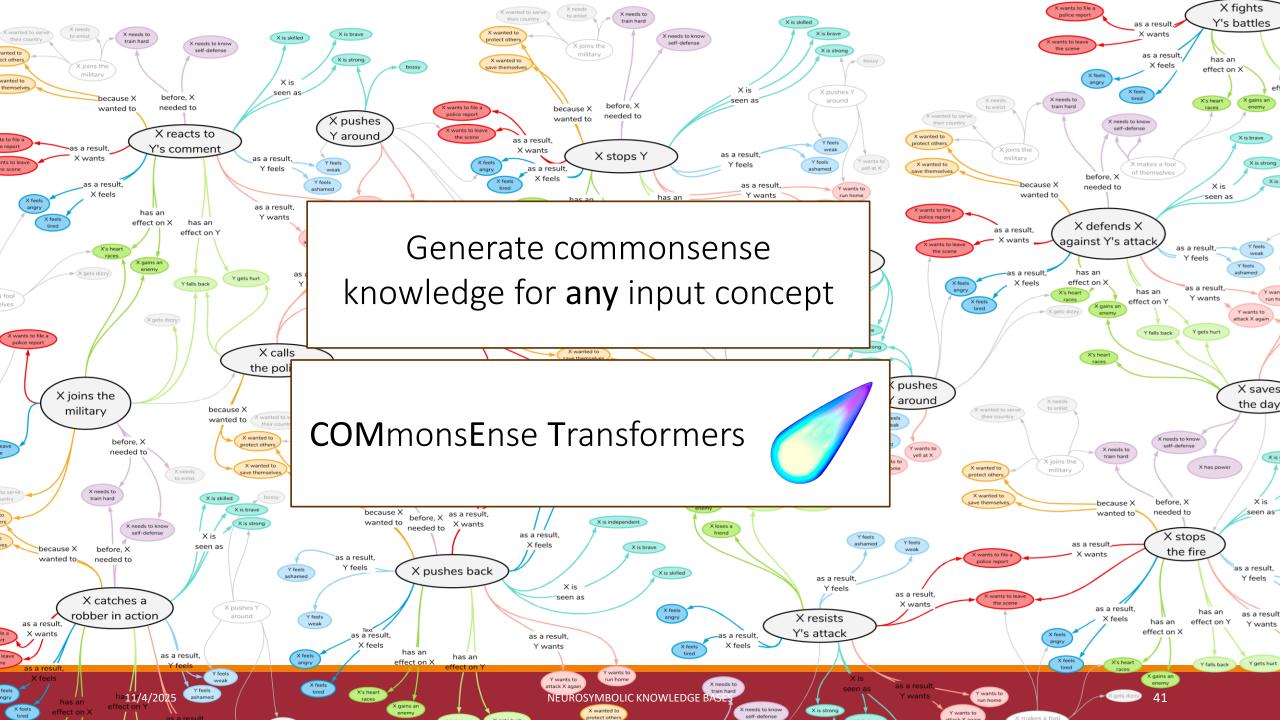
(Bosselut et al., 2019)

Learning Structure of Knowledge

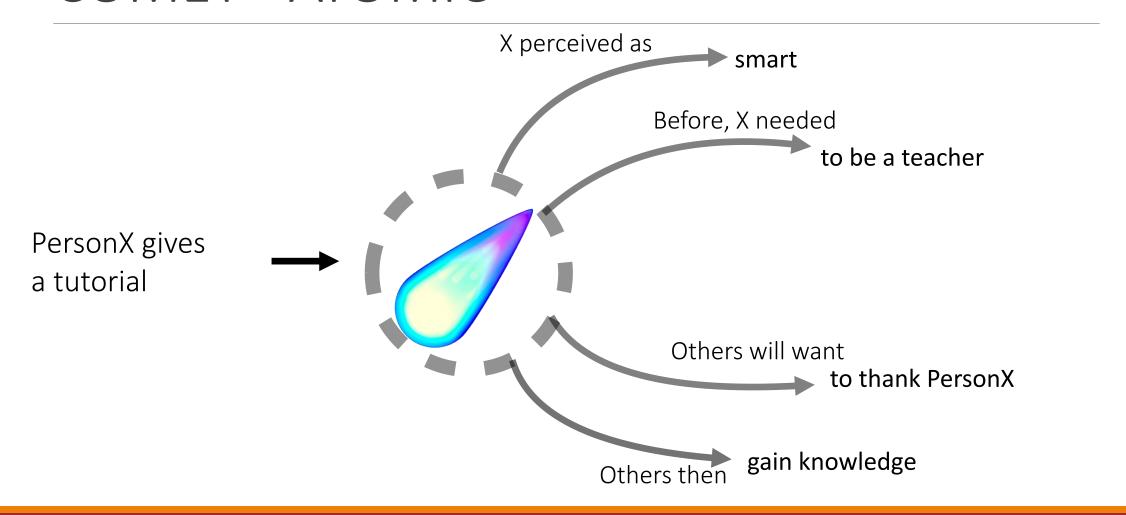
Language Model → Knowledge Model: generates knowledge of the structure of the examples used for training tail entity



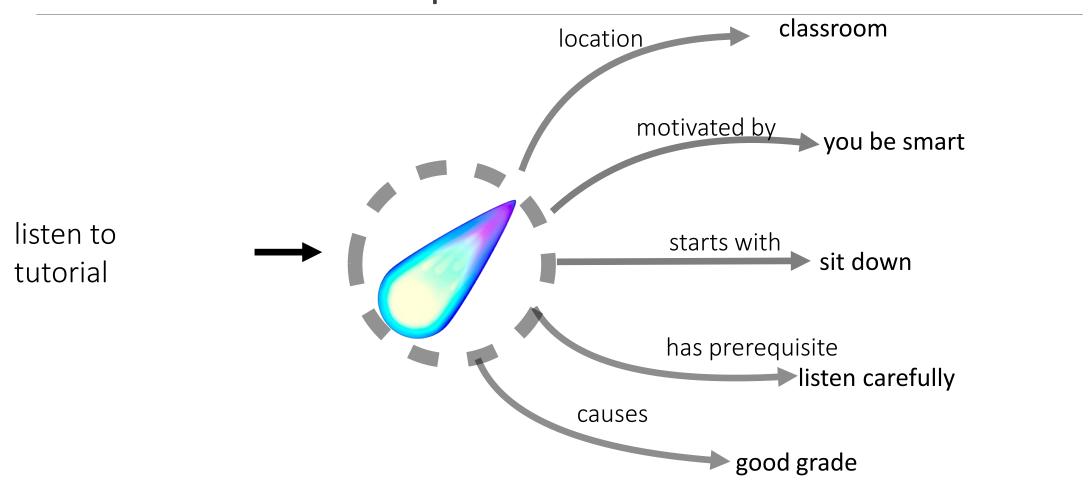
(Bosselut et al., 2019)



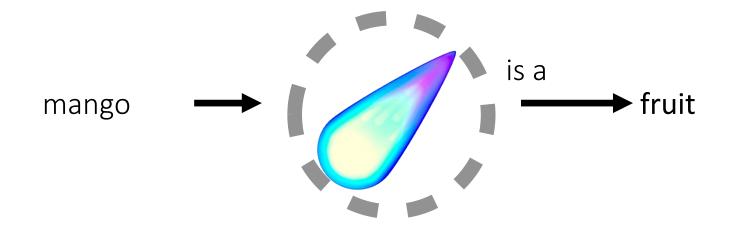
COMET - ATOMIC

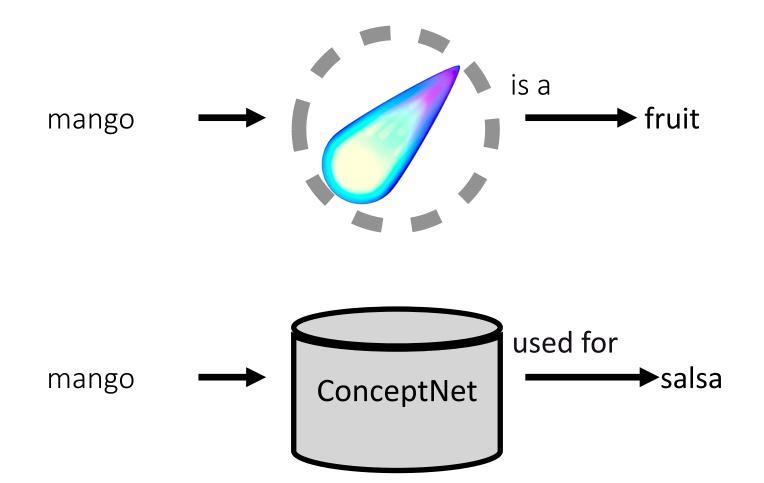


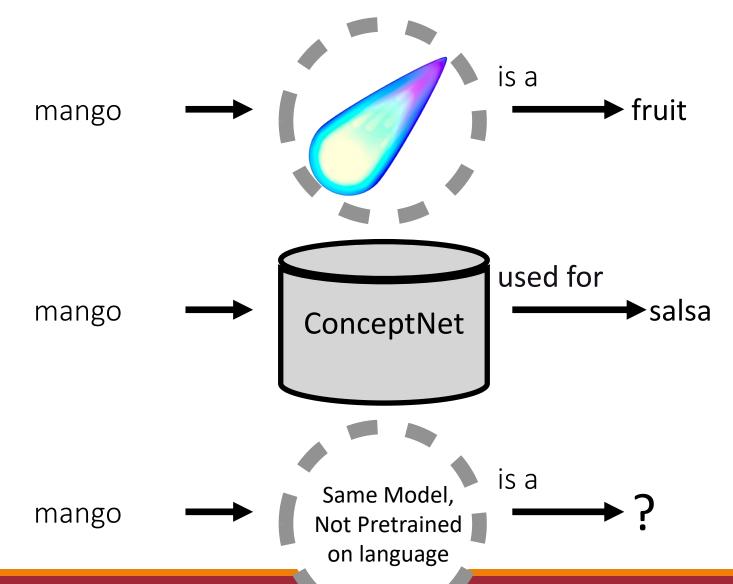
COMET - ConceptNet

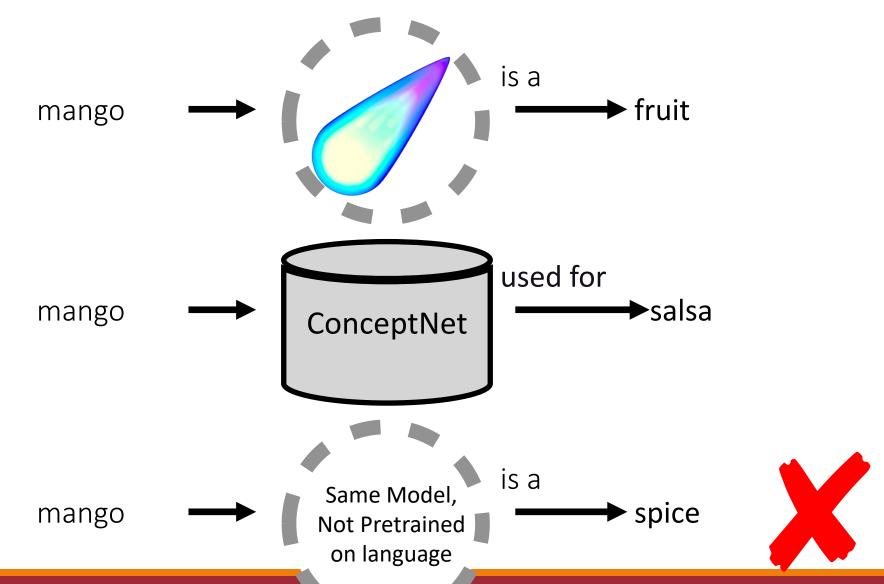


Why does this work?









11/4/2025 NEURO BASES 48

Can't an off-the-shelf language model do the same thing?

Do Language Models know this?

Sentence:

mango is a

Predictions:

2.1% great
1.9% very
1.2% new
1.0% good
1.0% small
← Undo

Do Language Models know this?

Sentence:

mango is a

Sentence:

a mango is a

Predictions:

2.1% great
1.9% very
1.2% new
1.0% good
1.0% small
← Undo

Predictions:

4.2% good
4.0% very
2.5% great
2.4% delicious
1.8% sweet

← Undo

Do Language Models know this?

Sentence:

mango is a

Sentence:

a mango is a

Sentence:

A mango is a

Predictions:

2.1% great
1.9% very
1.2% new
1.0% good
1.0% small
← Undo

Predictions:

4.2% good
4.0% very
2.5% great
2.4% delicious
1.8% sweet
← Undo

Predictions:

4.2% fruit
3.5% very
2.5% sweet
2.2% good
1.5% delicious

← Undo

Do Masked Language Models know this?

Mask 1 Predictions: Sentence: 69.7% . mango is a [MASK] 9.3%; 1.7%! 0.8% vegetable 0.7% ? Sentence: Mask 1 Predictions: 7.6% staple mango is a [MASK]. 7.6% vegetable 4.6% **plant** 3.5% tree 3.5% fruit Mask 1 Predictions: Sentence: 16.0% **banana** A mango is a [MASK]. 12.1% fruit 5.9% plant 5.5% vegetable 2.5% candy

Think-Pair-Share

How would you get a modern LM to produce the correct behavior without finetuning?

Sensitivity to cues

Candidate Sentence S_i	$\log p(S_i)$
"musician can playing musical instrument"	-5.7
"musician can be play musical instrument"	-4.9
"musician often play musical instrument"	-5.5
"a musician can play a musical instrument"	-2.9

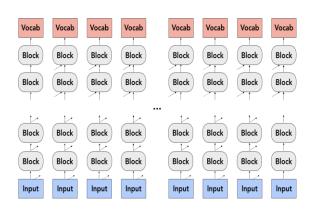
Feldman et al., 2019

Prompt	Model Predictions
A has fur.	dog, cat, fox,
A has fur, is big, and has claws.	cat, bear , lion,
A has fur, is big, has claws, has teeth, is an animal, eats, is brown, and lives in woods.	bear, wolf, cat,

Weir et al., 2020

Commonsense Transformers

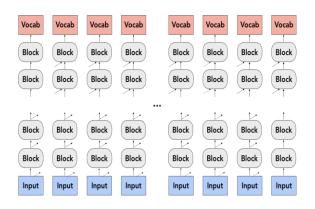
- Language models implicitly represent knowledge



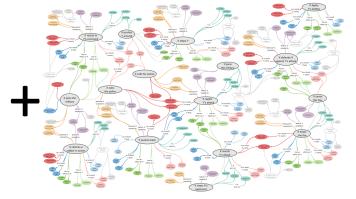
Pre-trained Language Model

Commonsense Transformers

- Language models implicitly represent knowledge
- Finetune them on knowledge graphs to learn structure of knowledge



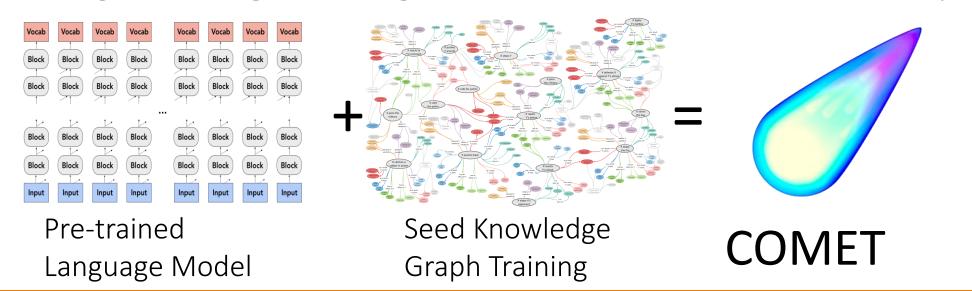
Pre-trained Language Model



Seed Knowledge Graph Training

Commonsense Transformers

- Language models implicitly represent knowledge
- Finetune them on knowledge graphs to learn structure of knowledge
- Resulting knowledge model generalizes structure to other concepts



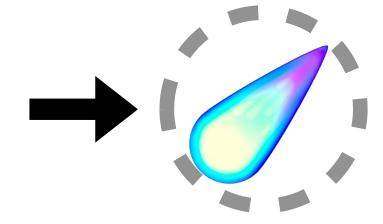
What are the implications of this knowledge representation?

Commonsense Knowledge for any Situation

transformer-style architecture — input format is natural language

- event can be fully parsed

Kai knew that things were getting out of control and managed to keep his temper in check

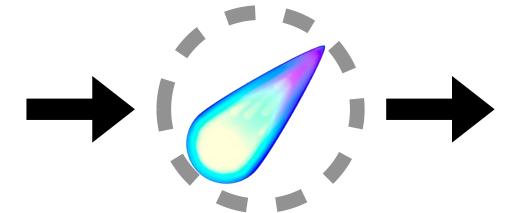


Commonsense Knowledge for any Situation

transformer-style architecture — input format is natural language

- event can be fully parsed
- knowledge generated dynamically from neural knowledge model

Kai knew that things were getting out of control and managed to keep his temper in check



Kai wants to avoid trouble

Kai intends to be calm

Kai stays calm

Kai is viewed as cautious

Ways of combining them

During training

Such as in reinforcement learning or retrieval-augmented generation (RAG)

After training

Like a symbolic "wrapper" – helps validate what the NN is doing

Others??

VerbNet v3.4

https://verbs.colorado.edu/verbn
et/

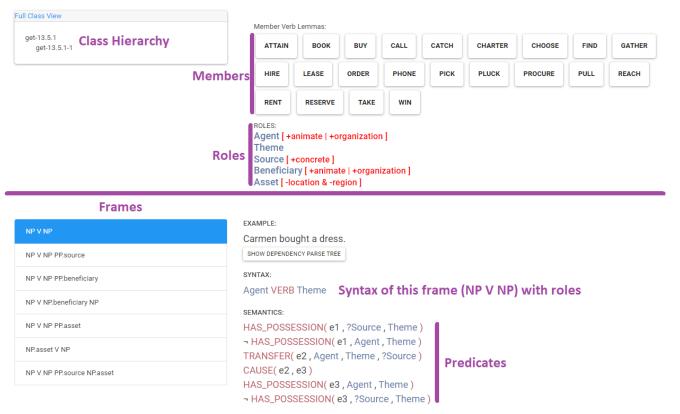
Verb classes based on Beth Levin (1993)

Data Source: hand-crafted

Languages: English

Use: raw data or my code

Demo: https://uvi.colorado.edu/uvi search



K. Kipper Schuler, "VerbNet: A Broad-Coverage, Comprehensive Verb Lexicon," University of Pennsylvania, 2005. Levin, B. (1993) "English Verb Classes and Alternations: A Preliminary Investigation", University of Chicago Press, Chicago, IL.

Using VerbNet

Pre-Conditions and Effects

Jen sent the book to Remy from Baltimore.

```
Pre-Conditions
```

has_location(e1, book, Baltimore) do(e2, **Jen**)

cause(e2, e3)

motion(e3, book)

!has_location(e3, book, Baltimore)

has_location(e4, book, Remy)

Effects

Baltimore: location

book : concrete

Jen: animate or organization

Pre-Conditions and Effects

Jen sent the book to Remy from Baltimore.

Pre-Conditions

has_location(e1, book, Baltimore)

Baltimore: location

book: concrete

Jen: animate or organization

Effects

do(e2, Jen)

-cause(e2, e3)

motion(e3, book)

!has_location(e3, book, Baltimore)

has_location(e4, book, Remy)

Pre-Conditions and Effects

Jen sent the book to Remy from Baltimore.

has_location(book, Baltimore)

Baltimore: location

book : concrete

Jen: animate or organization

!has_location(book, Baltimore)
has_location(book, Remy)

Resulting State Representation

Jen sent the book to Remy from Baltimore.

Baltimore: location

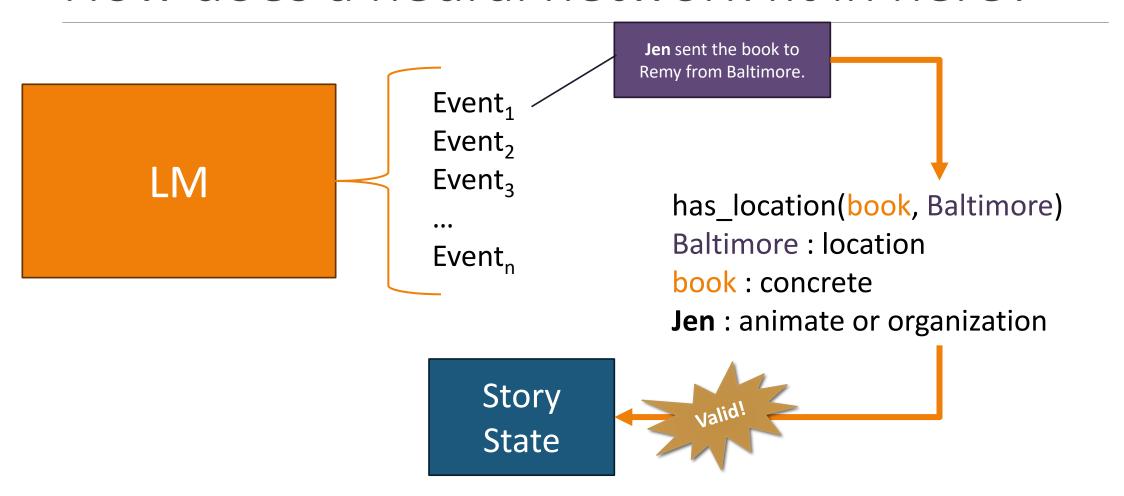
book : concrete

Jen: animate or organization

!has_location(book, Baltimore)

has_location(book, Remy)

How does a neural network fit in here?



Knowledge Check

- 1. Why might neurosymbolic systems still be useful with today's few-shot LMs?
- 2. What are some ways you would integrate a knowledge base into a modern LM?