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Learning Objectives
Define what neurosymbolic methods are

Follow examples of integrated and post-hoc knowledge base integration

Compare GPT-3-era neurosymbolic systems to modern neural systems
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Review:
Desirable properties for a commonsense 
resource

COVERAGE

Large scale

Diverse knowledge types

USEFUL

High quality knowledge

Usable in downstream tasks
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Multiple resources tackle different 
knowledge types



Review:
Eliciting commonsense from humans
EXPERTS CREATE KNOWLEDGE BASE

Advantages:
◦ Quality guaranteed

◦ Can use complex representations
(e.g., CycL, LISP)

Drawbacks:
◦ Time cost

◦ Training users

NON-EXPERTS WRITE KNOWLEDGE IN 
NATURAL LANGUAGE PHRASES

Natural language
◦ Accessible to non-experts

◦ Different phrasings allow for more nuanced 
knowledge

Fast and scalable collection
◦ Crowdsourcing 

◦ Games with a purpose

11/4/2025 NEUROSYMBOLIC KNOWLEDGE BASES 4

ATOMIC
(Sap et al., 2019)

ConceptNet 5.5
(Speer et al., 2017)

WordNet
(Miller et al., 

1990)

OpenCyc 4.0
(Lenat, 2012)



Neurosymbolic Methods
The combination of neural networks (“neuro”) and older, symbolic AI methods
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+ X repels
      Y’s attack

M. Sap et al., “ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning,” AAAI 
Conference on Artificial Intelligence (AAAI), vol. 33, no. 1, pp. 3027–3035, 2019, doi: 
10.1609/aaai.v33i01.33013027.

https://doi.org/10.1609/aaai.v33i01.33013027


Why combine them?

NEURAL NETWORKS

Statistical patterns over data

Easy to generate new text from

Need a lot of data to train (and might 
need to be labeled)

Hard to control

Examples: sequence-to-sequence 
networks, transformers (LLMs)

SYMBOLIC METHODS

Structured information

Easy for people to understand 
(interpretable)

Hard to make
◦ Need experts or a lot of time

Limited set of information

Examples: knowledge bases, planning 
domains/problems, scripts
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Ways of combining them
During training
◦ Such as in reinforcement learning or retrieval-augmented generation (RAG)

After training
◦ Like a symbolic “wrapper” – helps validate what the NN is doing

Others??
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Ways of combining them
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◦ Such as in reinforcement learning or retrieval-augmented generation (RAG)

After training
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Others??
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Adding neural networks to 
knowledge bases
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Katrina had the financial means to afford a new car 
while Monica did not, since had a high paying job.

WINOGRANDE: An Adversarial Winograd Schema Challenge at Scale. 
Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. AAAI 2020. 
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[CLS] Katrina had the financial means to afford a new car 
while Monica did not, since [SEP] Katrina had a high paying job.

[CLS] Katrina had the financial means to afford a new car 
while Monica did not, since [SEP] Monica had a high paying job.

0.51

0.49

11

Neural Architecture
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https://demo.allennlp.org/masked-lm 

Masked Language Models
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car cost a lot of moneyis capable of

job
is used for

make money

spend money

re
q

u
ire

s

spend a lot of money
entails

high-paying job

typ
e o

f

make a lot of money

req
u

ires

entails

buy

req
u

ires

buy something that costs 
a lot of money

req
u

ires

entails

x

https://conceptnet.io/
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Katrina had the financial means to afford a new car 
while Monica did not, since ____ had a high paying 
job.

0.430.57

vector representation

Model

Incorporating External Knowledge into 
Neural Models
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General Idea
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Incorporating External Knowledge into 
Neural Models

Task
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Story ending, 
Machine Comprehension

Social common sense
NLI 

Neural Component

Pre/post pre-
trained language 
models

Knowledge Source

Knowledge bases, 
extracted from 

text, hand-crafted 
rules

Combination Method
Attention, pruning, 
word embeddings, 
multi-task learning

Recipe
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A Corpus and Cloze Evaluation for Deeper Understanding of Commonsense Stories. Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, 
Dhruv Batra, Lucy Vanderwende, Pushmeet Kohli,  and James Allen. NAACL 2016. 

Story Cloze Test
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Task
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Conceptnet 5.5: An open multilingual graph of general knowledge. Robyn Speer, Joshua Chin, and Catherine Havasi. AAAI 2017. 

ConceptNet
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carcost a lot of money
is capable of

job is used for make money

spend money

requires

buy

requires
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Source



Other Knowledge Sources

11/4/2025 NEUROSYMBOLIC KNOWLEDGE BASES 18

Knowledge Bases
Mining from Text 

WordNet
SentiWordNet
ATOMIC

Mining script knowledge 
from corpora, event 
plausibility from corpora

Knowledge base 
embeddings, sentiment 
analysis models, COMET

Tools



Neural Component
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[CLS] Katrina had the financial means to afford a new car 
while Monica did not, since [SEP] Katrina had a high paying job.

[CLS] Katrina had the financial means to afford a new car 
while Monica did not, since [SEP] Monica had a high paying job.

0.51

0.49

Neural
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COMET’s Combination Method

Incorporate into scoring function

Symbolic → vector representation

Multi-task learning 
◦ (This was before we had very large LMs)
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Combined
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Example

RocStories

MCScript
[CLS] Story: s1 … sn ...  [SEP] Ending 2: e21, … , e2l

[CLS] Story: s1 … sn ...  [SEP] Ending 1: e11, … , e1k 0.51

0.49

Multi-task Learning Si = restaurant Ej = food

1. Are they related? 2. What’s the relation?

restaurant food

Aux Classifier 1

restaurant food

Aux Classifier 2

ConceptNet

yes

serve

Incorporating Commonsense Reading Comprehension with Multi-task Learning. Jiangnan Xia, Chen Wu, and Ming Yan. CIKM 2019.
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Incorporating External Knowledge into 
Neural Models



Review: Limitations

● Insufficient Coverage

22

● Not 100% accurate

● Easy to incorporate simple resources with stationary facts (ConceptNet) but they 
are limited in expressiveness:

factual
world

knowledge

knowledge
In KBs

gentleman restaurant
located at

type of

job

person

Monica
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ATOMIC
(X goes to the mall, 
Effect on X, buys 
clothes)

(X goes the mall, 
Perception of X, rich)

(X gives Y some money, 
Reaction of Y, grateful)

(Sap et al., 2019)

Limitations of Knowledge Graphs
◦ Situations rarely found as-is in commonsense knowledge graphs
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Kai knew that things were 
getting out of control and 
managed to keep his temper 
in check

Limitations of Knowledge Graphs
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X keeps X’s temper

X keeps ___ under control

X keeps X's ___ in check

Kai knew that things were getting out 
of control and managed to keep his 
temper in check

Limitations of Knowledge Graphs
◦ Situations rarely found as-is in commonsense knowledge graphs

◦ Connecting to knowledge graphs can yield incorrect nodes
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X keeps X’s temper

X keeps ___ under control

Kai knew that things were getting out 
of control and managed to keep his 
temper in check

X sweats

X avoids a fight

X wants to show strength

X keeps X's ___ in check

Limitations of Knowledge Graphs
◦ Situations rarely found as-is in commonsense knowledge graphs

◦ Connecting to knowledge graphs can yield incorrect nodes

◦ Suitable nodes are often uncontextualized
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Challenge
How do we provide machines with large-scale commonsense knowledge?

11/4/2025 NEUROSYMBOLIC KNOWLEDGE BASES 27



Write commonsense
knowledge facts

Store facts in 
knowledge graph

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, buy)

Observe world

Constructing Knowledge Graphs
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Write commonsense
knowledge facts

Store facts in 
knowledge graph

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, buy)

Observe world

(Miller, 1995)

(Sap et al., 2019)(Lenat, 1995)

(Singh et al., 2002)

Constructing Knowledge Graphs
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Challenges of Prior Approaches
Commonsense knowledge is immeasurably vast, making it 
impossible to manually enumerate
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Constructing Knowledge Graphs 
Automatically

31

John went to the grocery 

store to buy some steaks. 

He was going to prepare 

dinner for his daughter’s 

birthday. She was turning 5 

and would be starting 

elementary school soon.

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, buy)

Gather Textual
Corpus

(Schubert, 2002)

(Banko et al., 2007)

(Zhang et al., 2020)

Automatically extract 
knowledge

Webchild

(Tandon et al., 2019)
(Speer et al., 2017)
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Store in knowledge graph



Challenges of Prior Approaches
Commonsense knowledge is immeasurably vast, making it 
impossible to manually enumerate

Commonsense knowledge is often implicit, and often can’t be 
directly extracted from text
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Knowledge Base Completion

33

Learn relationships 
among entities

Gather training set
of knowledge tuples

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, start school)
(person, CapableOf, start school)

(person, CapableOf, buy)

Predict new relationships 

(person, CapableOf,       )?

(Bordes et al., 2013)

(Riedel et al., 2013)

(Toutanova et al., 2015)

(Yang et al., 2015)

(Trouillon et al., 2016)

(Nguyen et al., 2016)

(Dettmers et al., 2018)

(Socher et al., 2013)
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Commonsense Knowledge Base 
Completion

34

( person,       CapableOf,         buy )

head
entity

tail
entity

relation

Bilinear Model

Linear Linear

True / False

Li et al., 2016 Jastrzebski et al., 2018

Only high confidence predictions
are validated

Low Novelty
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Commonsense Knowledge Base 
Completion and Generation!
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Challenges of Prior Approaches
Commonsense knowledge is immeasurably vast, making it impossible to 
manually enumerate

Commonsense knowledge is often implicit, and often can’t be directly extracted 
from text

Commonsense knowledge resources are quite sparse, making them difficult to 
extend by only learning from examples
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Solution Outline
Leverage manually curated commonsense knowledge resources
Learn from the examples to induce new relationships
Scale up using language resources
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Learn word embeddings
from language corpus

Retrofit word embeddings
on semantic resource

Learn knowledge-
aware embeddings

Faruqui et al., 2015, Speer et al., 2017



head entity

<requires>

relation

tail entity

Structure of Knowledge Tuple

38

person sails

across oceans
boatbuy a

(entity to generate)
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person sails across oceans

head entity

<requires>

relation

boatbuy a

tail entity

Learning Structure of Knowledge
Given a seed entity and a relation, 
learn to generate the target entity

39

ℒ = −∑log𝑃(target words|seed words, relation)

Language Model

(Bosselut et al., 2019)

11/4/2025 NEUROSYMBOLIC KNOWLEDGE BASES



Language Model  →  Knowledge Model: generates knowledge of the structure 
of the examples used for training

person sails across oceans

boatbuy a

Knowledge Model

<requires>

Learning Structure of Knowledge

40

tail entity
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(Bosselut et al., 2019)head entity relation
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Generate commonsense 
knowledge for any input concept

COMmonsEnse Transformers
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PersonX gives 
a tutorial

COMET - ATOMIC

42

X perceived as
smart

Before, X needed

to be a teacher

Others then

Others will want
to thank PersonX

gain knowledge
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listen to 
tutorial

COMET - ConceptNet

43

location classroom

motivated by
you be smart

causes

good grade

has prerequisite
listen carefully

starts with
sit down
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Why does this work?
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Transfer Learning from Language

mango
is a

fruit
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mango
is a

fruit

mango salsaConceptNet

used for

Transfer Learning from Language
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mango
used for

salsaConceptNet

Same Model, 
Not Pretrained

on language

mango
is a

?

mango
is a

fruit

47

Transfer Learning from Language

11/4/2025 NEUROSYMBOLIC KNOWLEDGE BASES



48

mango
used for

salsaConceptNet

Same Model, 
Not Pretrained

on language

mango
is a

spice

mango
is a

fruit

Transfer Learning from Language
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Can’t an off-the-shelf language model do 
the same thing?
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https://demo.allennlp.org/next-token-lm

Do Language Models know this?
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Do Language Models know this?
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Do Language Models know this?



Do Masked Language Models know this?
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Think-Pair-Share
How would you get a modern LM to produce the correct behavior without 
finetuning?
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Sensitivity to cues
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Feldman et al., 2019

Weir et al., 2020



Commonsense Transformers
- Language models implicitly represent knowledge 
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Pre-trained 
Language Model



+

Commonsense Transformers
- Language models implicitly represent knowledge 

- Finetune them on knowledge graphs to learn structure of 
knowledge
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Pre-trained 
Language Model

Seed Knowledge
Graph Training



COMETPre-trained 
Language Model

Seed Knowledge
Graph Training

+ =

Commonsense Transformers
- Language models implicitly represent knowledge 

- Finetune them on knowledge graphs to learn structure of 
knowledge

- Resulting knowledge model generalizes structure to other concepts
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What are the implications of this 
knowledge representation?
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Commonsense Knowledge for any 
Situation

transformer-style architecture — input format is natural language

- event can be fully parsed

61

Kai knew that things were 
getting out of control and 
managed to keep his temper 
in check
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Commonsense Knowledge for any 
Situation

transformer-style architecture — input format is natural language

- event can be fully parsed

- knowledge generated dynamically from neural knowledge model

62

Kai wants to avoid trouble

Kai intends to be calm

Kai stays calm

Kai is viewed as cautious

Kai knew that things were 
getting out of control and 
managed to keep his temper 
in check
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Ways of combining them
During training
◦ Such as in reinforcement learning or retrieval-augmented generation (RAG)

After training
◦ Like a symbolic “wrapper” – helps validate what the NN is doing

Others??
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VerbNet v3.4
https://verbs.colorado.edu/verbn
et/

Verb classes based on Beth Levin 
(1993)

Data Source: hand-crafted

Languages: English

Use: raw data or my code

Demo: https://uvi.colorado.edu/uvi_search

65

K. Kipper Schuler, “VerbNet: A Broad-Coverage, Comprehensive Verb Lexicon,” University of Pennsylvania, 2005.
Levin, B. (1993) “English Verb Classes and Alternations: A Preliminary Investigation”, University of Chicago Press, Chicago, IL.
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Using VerbNet

has_location(e1, book, Baltimore)

do(e2, Jen)

cause(e2, e3)

motion(e3, book)

!has_location(e3, book, Baltimore)

has_location(e4, book, Remy)

66

Initial_Location : location

Theme : concrete

Agent : animate or organization

Agent Theme Destination
Jen sent the book to Remy from Baltimore.

Initial_Location 

PREDICATES SELECTIONAL RESTRICTIONS

ROLES

NEUROSYMBOLIC KNOWLEDGE BASES11/4/2025
L. J. Martin, “Neurosymbolic Automated Story Generation,” PhD, Georgia Institute of Technology, Atlanta, GA, 
2021. https://smartech.gatech.edu/handle/1853/64643

https://smartech.gatech.edu/handle/1853/64643


Pre-Conditions and Effects
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Baltimore : location

book : concrete

Jen : animate or organization

Jen sent the book to Remy from Baltimore.

Pre-Conditions Effects

do(e2, Jen)

cause(e2, e3)

motion(e3, book)

!has_location(e3, book, Baltimore)

has_location(e4, book, Remy)

has_location(e1, book, Baltimore)
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L. J. Martin, “Neurosymbolic Automated Story Generation,” PhD, Georgia Institute of Technology, Atlanta, GA, 
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Pre-Conditions and Effects
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Baltimore : location

book : concrete

Jen : animate or organization

Jen sent the book to Remy from Baltimore.

Pre-Conditions Effects
do(e2, Jen)

cause(e2, e3)

motion(e3, book)

!has_location(e3, book, Baltimore)

has_location(e4, book, Remy)

has_location(e1, book, Baltimore)
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L. J. Martin, “Neurosymbolic Automated Story Generation,” PhD, Georgia Institute of Technology, Atlanta, GA, 
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Pre-Conditions and Effects

69

Jen sent the book to Remy from Baltimore.

Pre-Conditions Effects

!has_location(book, Baltimore)

has_location(book, Remy)
has_location(book, Baltimore)
Baltimore : location
book : concrete
Jen : animate or organization

Event

NEUROSYMBOLIC KNOWLEDGE BASES11/4/2025
L. J. Martin, “Neurosymbolic Automated Story Generation,” PhD, Georgia Institute of Technology, Atlanta, GA, 
2021. https://smartech.gatech.edu/handle/1853/64643
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Resulting State Representation

70

Jen sent the book to Remy from Baltimore.

Baltimore : location
book : concrete
Jen : animate or organization
!has_location(book, Baltimore)
has_location(book, Remy)

NEUROSYMBOLIC KNOWLEDGE BASES11/4/2025
L. J. Martin, “Neurosymbolic Automated Story Generation,” PhD, Georgia Institute of Technology, Atlanta, GA, 
2021. https://smartech.gatech.edu/handle/1853/64643
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How does a neural network fit in here?
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LM

Event1

Event2

Event3

…
Eventn

Jen sent the book to 
Remy from Baltimore.

Story
State

has_location(book, Baltimore)
Baltimore : location
book : concrete
Jen : animate or organization



Knowledge Check
1. Why might neurosymbolic systems still be useful with today’s few-shot LMs?

2. What are some ways you would integrate a knowledge base into a modern 
LM?
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