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Learning Objectives
Become acquainted with language models

Compare sequence-to-sequence RNNs to transformers

Consider the strengths and weaknesses of LLMs/transformers
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Class Announcements
I will post a Google Form for Reading Presentations (grad only) sign up

I plan to create an accelerated deadline for the class project
◦ IEEE ToG due December 1
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https://transactions.games/special-issue/special-issue-on-
large-language-models-and-games

https://transactions.games/special-issue/special-issue-on-large-language-models-and-games
https://transactions.games/special-issue/special-issue-on-large-language-models-and-games
https://transactions.games/special-issue/special-issue-on-large-language-models-and-games
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Review: Components of Interactive 
Fiction Games

The parser, which is the component 
that analyzes natural language input in 
an interactive fiction work. 

The world model, which is setting of 
an interactive fiction work.
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Review: Why were parsers so bad?

Limited computational resources. Computers had ≤128 KB of memory

Language is difficult. There are many things that make human languages genuinely 

challenging for a computer to process.

Keyword-based commands. Only exact matches worked properly.  No synonyms, no 

paraphrases.

Everything was manual. Game developers had to anticipate all possible commands, and 

manually code the responses.

No machine learning. This was prior to the advent of machine learning based natural 

language processing
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Review: World Model

It represents the physical environment, and things like

• Settings or locations

• Physical objects in each setting

• The player’s character 

• Non-player characters

It also represents and simulates the physical laws of the environment.
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Language Models
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Making a neural language model
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Using a neural language model

I am so
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Probable next words

excited

Example created with text-davinci-003 on openai.com in Feb. 2023139/3/2024 NEURAL LANGUAGE MODELS & ATTENTION



Quick Poll
1. Select which classes you have taken (can be either at UMBC or another 

institution).
a) Introduction to AI/Principles of AI

b) Natural Language Processing

c) Machine Learning

d) Any statistics course

2. Have you used an LLM (e.g., GPT, Llama, Gemini, Mistral) before?
a) Yes, I do research/work with them

b) Yes, I use them frequently (for fun/to help me)

c) Yes, I’ve played around with them a few times

d) No, I haven’t had the chance

e) No, I don’t know what that is
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Sequence-to-Sequence RNNs
Up until 2017 or so, neural language models were mostly built using recurrent 
neural networks.
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Sequence-to-Sequence / Encoder-Decoder Models

9/3/2024 NEURAL LANGUAGE MODELS & ATTENTION 17

https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_intro/

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” in Conference on Advances in Neural Information Processing Systems (NeurIPS), 
Montréal, Canada, 2014, pp. 3104–3112. https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

Can be 
LSTM

https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_intro/
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html


Inputs to the Encoder
The encoder takes as input the embeddings corresponding to each token in the 
sequence.
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Outputs from the Encoder
The encoder outputs a sequence of vectors. These are called the hidden state of 
the encoder.
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Inputs to the Decoder
The decoder takes as input the hidden states from the encoder as well as the 
embeddings for the tokens seen so far in the target sequence.
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ෝ𝒚𝒕
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Outputs from the Decoder
The decoder outputs an embedding ෞ𝒚𝒕 . The goal is for this embedding to be as 
close as possible to the embedding of the true next token.
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Turning ෞ𝒚𝒕 into a Probability Distribution 
We can multiply the predicted embedding ෞ𝒚𝒕 by our vocabulary embedding 
matric to get a score for each vocabulary word. These scores are referred to as 
logits.

The softmax function then lets us turn the logits into probabilities.
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Softmax function

𝑃 𝑌𝑡 = 𝑖 𝐱1:𝑇 , 𝐲1:𝑡−1 =
exp(𝐄 ෝ𝒚𝑡 𝑖 )

σ𝑗 exp(𝐄 ෝ𝒚𝑡 𝑖 )

ෝ𝒚𝒕 
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Loss Function
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Loss Function
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Loss Function
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𝑃 𝑌𝑡 = 𝑖 𝐱1:𝑇 , 𝐲1:𝑡−1 =
exp(𝐄 ෝ𝒚𝑡 𝑖 )

σ𝑗 exp(𝐄 ෝ𝒚𝑡 𝑖 )

ෝ𝒚𝒕 
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Loss Function
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Generating Text
To generate text, we need an algorithm that selects tokens given the predicted 
probability distributions.

Examples:

Argmax

Random sampling

Beam search
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RNNs - Single Layer Decoder
The current hidden state is computed as a function 
of the previous hidden state and the embedding of 
the current word in the target sequence.

𝐡𝑡 = RNN(𝐖𝑖ℎ𝐲𝑡 + 𝐖ℎℎ𝐡𝑡−1 + 𝐛ℎ )

The current hidden state is used to predict an 
embedding for the next word in the target 
sequence.

ො𝐞𝑡 = 𝐛𝑒 + 𝐖ℎ𝑒𝐡𝑡

This predicted embedding is used in the loss 
function:
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Usually the 
zero-vector
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What is the “RNN” unit?
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?
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LSTM: Long Short-Term Memory (Hochreiter & Schmidhuber, 1997)

 

GRU: Gated Recurrent Unit (Cho et al., 2014)

LSTMs/GRUs
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https://en.wikipedia.org/wiki/Gated_recurrent_unit#/media/File:Gated_Recurrent_Unit,_base_type.svg

https://medium.com/analytics-vidhya/lstms-explained-a-complete-technically-accurate-conceptual-guide-with-keras-2a650327e8f2

LSTMs were originally designed to keep 
around information for longer in the hidden 
state as it gets repeatedly updated.



RNN Multi-Layer Decoder 
Architecture

Computing the next hidden state:

For the first layer:

𝐡𝑡
1 = RNN(𝐖𝑖ℎ 𝐲𝑡 + 𝐖ℎ ℎ 𝐡𝑡−1

1 + 𝐛ℎ
1 )

For subsequent layers:

𝐡𝑡
𝑙 = RNN(𝐖𝑖ℎ 𝐲𝑡 + 𝐖ℎ ℎ 𝐡𝑡

𝑙−1 + 𝐖ℎ ℎ 𝐡𝑡−1
𝑙 + 𝐛ℎ

𝑙 )

Predicting an embedding for the next token in the sequence:

ෝ𝐞𝑡 = 𝐛𝑒 + σ𝑙=1
𝐿 𝐖ℎ 𝑒

𝐡𝑡
𝑙

Each of the b and W are learned bias and weight matrices.
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𝑙 − 1 𝑙𝑙 𝑙𝑙

1 1 1

𝑙
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RNN Encoder-Decoder 
Architectures

How do we implement an encoder-decoder model?
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RNN Encoder-Decoder 
Architectures
Simplest approach: Use the final hidden state from the encoder to initialize the 
first hidden state of the decoder.
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RNN Encoder-Decoder 
Architectures
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When predicting the next English 
word, how much weight should the 
model put on each French word in 
the source sequence?
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[The, hippopotamus, …

[L’ ,           hippopotame,          a,     mangé,          mes,         devoirs]



Attention
Better approach: an attention mechanism

[The, hippopotamus, …

[L’ ,           hippopotame,          a,     mangé,          mes,         devoirs]
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RNN Encoder-Decoder 
Architectures
The tth context vector is computed as 𝐜𝑡 = 𝐇enc𝑎𝑡

𝑎𝑡[i] = softmax(att_score(𝐡𝑡
dec, 𝐡𝑖enc))

There are a few different options for the attention score: 

att_score(𝐡𝑡
dec, 𝐡𝑖

enc) = 

𝐡𝑡
dec ∙ 𝐡𝒊

enc

𝐡𝑡
dec 𝐖𝑎 𝐡𝒊

enc

𝑤𝑎1
⟙ tanh( 𝐖𝑎𝟐[𝐡𝑡

dec,  𝐡𝒊
enc ])
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dot product

bilinear function

MLP
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Attention Decoder
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https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html


Limitations of Recurrent 
architecture
Slow to train.
◦ Can’t be easily parallelized.

◦ The computation at position t is dependent on first doing the computation at position t-1.

Difficult to access information from many steps back.
◦ If two tokens are K positions apart, there are K opportunities for knowledge of the first token 

to be erased from the hidden state before a prediction is made at the position of the second 
token.
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Transformers
Since 2018, the field has rapidly standardized on the Transformer architecture
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Transformers
The Transformer is a non-recurrent non-convolutional 
(feed-forward) neural network designed for language 
understanding

• introduces self-attention in addition to encoder-
decoder attention
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