Interactive Fiction and Text Generation

Lara J. Martin (she/they)

https://laramartin.net/interactive-fiction-class

Slides modified from Dr. Daphne Ippolito

Learning Objectives

Compare sequence-to-sequence RNNs to transformers

Consider the strengths and weaknesses of LLMs/transformers

What is a language model?

Review: Sequence-to-Sequence / Encoder-Decoder Models

I. Sutskever, O. Vinyals, and Q. V. Le, "Sequence to Sequence Learning with Neural Networks," in *Conference on Advances in Neural Information Processing Systems (NeurIPS)*, Montréal, Canada, 2014, pp. 3104–3112. <u>https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html</u>

Review: Turning \widehat{yt} into a Probability Distribution

We can multiply the predicted embedding \widehat{yt} by our vocabulary embedding matric to get a score for each vocabulary word. These scores are referred to as logits.

TRANSFORMERS

The softmax function then lets us turn the logits into probabilities.

Review: Attention

Better approach: an attention mechanism

Compute a linear combination of the encoder hidden states.

Decoder's prediction at position *t* is based on both the context vector and the hidden state outputted by the RNN at that position.

Review: Attention Decoder

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

What are some of the limitations of RNNs?

Transformers

Since 2018, the field has rapidly standardized on the Transformer architecture

Attention Is All You Need

Ashish Vaswani*Noam Shazeer*Niki Parmar*Jakob Uszkoreit*Google BrainGoogle BrainGoogle ResearchGoogle Researchavaswani@google.comnoam@google.comnikip@google.comusz@google.com

Aidan N. Gomez* †

University of Toronto

aidan@cs.toronto.edu

Llion Jones* Google Research llion@google.com **Łukasz Kaiser*** Google Brain lukaszkaiser@google.com

Illia Polosukhin* [‡] illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to

Transformers

The Transformer is a **non-recurrent** non-convolutional (feed-forward) neural network designed for language understanding

• introduces <u>self-attention</u> in addition to encoderdecoder attention

Scaled Dot-Product Attention

The scaled dot-product attention mechanism is

Feed almost identical to the one we looked at, but let's Forward turn it into matrix multiplications. Add & Norm Add & Norm Multi-Head Feed Attention N× Forward The query: $Q \in R^{Txdk}$ Add & Norm The key: $K \in R^{T'xdk}$ N× Add & Norm Masked Multi-Head Multi-Head The value: $V \in R^{Txdk}$ This is the α vector we Attention Attention learned about before. Positional Positional Encoding Attention(Q,K,V) = softmax $\left(\frac{QK^T}{\sqrt{d_{\mu}}}\right)$ Encoding Output Input Embedding Embedding Outputs Inputs

Output Probabilities

Softmax

Linear

Add & Norm

TRANSFORMERS

Scaled Dot-Product Attention

The scaled dot-product attention mechanism is almost identical to the one we looked at, but let's

Output Probabilities

Softmax

Linear

Add & Norm

Scaled Dot-Product Attention

Attention(Q,K,V) = softmax $\left(\frac{QK^{T}}{\sqrt{d_{L}}}\right)$ V

The rough algorithm:

- For each vector in Q (query matrix), take the linear sum of the vectors in V (value matrix)
- The amount to weigh each vector in V is dependent on how "similar" that vector is to the query vector
- "Similarity" is measured in terms of the dot product between the vectors

Output Probabilities Multi-Head Attention Softmax Linear Multi-Head Attention(Q,K,V) = softmax $\left(\frac{QK'}{\sqrt{d_{\cdot}}}\right)$ V Add & Norm Attention Linear Feed Forward Concat MultiHeadAtt(Q,K,V) = Add & Norm Scaled Dot-Product Add & Norn $Concat(head_1, ... head_h) \mathbf{W}^O$ Multi-Head Attention Feed Attention Forward N× Split Split Split Instead of operating on **Q**, **K**, and **V** mechanism Add & Norm projects each input into a smaller dimension. This is Linear Linear Linear N× Add & Norm Masked done h times. Multi-Head Multi-Head Attention Attention The attention operation is performed on each of Positional these "heads," and the results are concatenated. Positional Encoding Encoding Output Input Embedding Embedding Multi-head attention allows the model to jointly attend to information from different representation Outputs Inputs subspaces at different positions. (shifted right)

Think-Pair-Share

Why might **self**-attention be useful?

Why do you think we don't need recurrence anymore (i.e., why is "attention all you need")?

TRANSFORMERS

TRANSFORMERS

= token embeddings + position embeddings

TRANSFORMERS

Strengths of the Transformer Architecture

Training is easily parallelizable

• Larger models can be trained efficiently.

Does not "forget" information from earlier in the sequence.

• Any position can attend to any position.

What are some of its weaknesses?

Neural Language Model Timeline

