
Schedule
o Module 2 Review

o 1 paper presentation

o Begin lecture on search/planning

10/8/2024 MODULE 2 REVIEW 1

Module 2 Review
10/8/2024

CMSC 491/691 - INTERACTIVE FICTION AND TEXT GENERATION
DR. LARA J. MARTIN

210/8/2024 MODULE 2 REVIEW

Review: Causal Links

3

Bilbo found a ring Bilbo wears the ring
<enables>

Causes/enables will
be used
interchangeably

10/8/2024 MODULE 2 REVIEW

Review: Script
“A standard event sequence” that

● Lays out different paths/options
● Consists of causal chains
● Can be used to leave out tedious details the reader is

expected to know
o Can be considered a literary trope or a common social
scenario

4
Schank, R. C., & Abelson, R. P. (1977). In Scripts, plans, goals, and understanding: An enquiry into human knowledge structures (The Artificial Intelligence Series, pp. 36–
68). Erlbaum. 10/8/2024 MODULE 2 REVIEW

Review: Principle of Minimal Departure
“This law—to which I shall refer as the principle of minimal departure—states that we
reconstrue the central world of a textual universe in the same way we reconstrue the alternate
possible worlds of nonfactual statement: as conforming as far as possible to our representation
of [the actual world]”

In other words:

The story world is expected to be like the real world, unless otherwise specified

5

Ryan, M.-L. (1991). Chapter 3: Reconstructing the Textual Universe: The Principle of Minimal Departure. In Possible Worlds, Artificial Intelligence, and
Narrative Theory (pp. 48–60). Indiana Univ. Press.

10/8/2024 MODULE 2 REVIEW

Review: Linking Events
PROBABILISTIC

Occur frequently together (not necessarily
because they had to)

Example:

I pour dog food in my dog’s bowl.

I pet my dog.

CAUSAL

Occur because of one another

Example:

I pour dog food in my dog’s bowl.

My dog eats dog food.

610/8/2024 MODULE 2 REVIEW

Review: What are procedures?
• A procedure is “a series of actions conducted in a certain order or manner,” as
defined by Oxford

• A more refined definition: “a series of steps happening to achieve some
goal[1]”
• Why?

• Examples of procedures: instructions (recipes, manuals, navigation info, how-
to guide), algorithm, scientific processes, etc.
• We focus on instructions, which is human-centered and task-oriented

• Examples of non-procedures: news articles, novels, descriptions, etc.
• Those are often narrative: events do not have a specific goal
• The umbrella term is script[2]

[1] (Momouchi, 1980) [2] (Schank, 1977)10/8/2024 MODULE 2 REVIEW 7

Review: Intent Detection
 Task-oriented dialog systems needs to match
an utterance to an intent, before making
informed responses

 Sentence classification task
 Given an utterance, and some candidate

intents
 Choose the correct intent
 Evaluated by accuracy

Intent: Check Flight Price

Example from Snips (Coucke et al., 2018)
Utterance: “Find the schedule at Star Theatres.”
Candidate intents: Add to Playlist, Rate Book, Book Restaurant,
Get Weather, Play Music, Search Creative Work, Search Screening Event

What’s the cheapest business class flight
tomorrow to Shenzhen?

It is $2800 with XX airlines at 14:30.

10/8/2024 MODULE 2 REVIEW 8
(Zhang et al., 2020): Intent Detection with WikiHow

Review: Procedures are Hierarchical
 An event can simultaneously be a goal of one
procedure, and a step in another

 A procedural hierarchy… So what?
 Can “explain in more details” by expansion
 Can shed light on event granularity (why?)

 How do you build such hierarchy?
 To “host a party”, I need to “clean the floor”; to

“clean the floor”, I need to do what?

10/8/2024 MODULE 2 REVIEW 9
(Zhou et al., 2022): Show Me More Details: Discovering Hierarchies of Procedures from Semi-structured Web Data

Review: Plan-and-Write
Carrie had just learned how to ride a bike. She didn’t have a bike of her own. Carrie
would sneak rides on her sister’s bike. She got nervous on a hill and crashed into a wall.
The bike frame bent and Carrie got a deep gash on her leg.

Carrie→bike→sneak→nervous→leg

10

Yao, L., Peng, N., Weischedel, R., Knight, K., Zhao, D., & Yan, R. (2019). Plan-And-Write: Towards Better Automatic Storytelling.
AAAI Conference on Artificial Intelligence (AAAI), 33(1), 7378–7385. https://aaai.org/ojs/index.php/AAAI/article/view/4726

10/8/2024 MODULE 2 REVIEW

Review: Guided Open Story Generation
Using Probabilistic Graphical Models
o Use discourse representation structure (DRS) parser to get semantic relationships

11
Gandhi, S., & Harrison, B. (2019). Guided open story generation using probabilistic graphical models. International Conference on
the Foundations of Digital Games (FDG), 1–7. https://doi.org/10.1145/3337722.3341871

10/8/2024 MODULE 2 REVIEW

Review: Example of a Probabilistic Event
Representation
From sentence, extract event representation:

(subject, verb, direct object, modifier, preposition)

Original sentence: yoda uses the force to take apart the platform

Events:
yoda use force Ø Ø
yoda take_apart platform Ø Ø

Generalized Events:

<PERSON>0 fit-54.3 power.n.01 Ø Ø

<PERSON>0 destroy-44 surface.n.01 Ø Ø

12
Martin, Lara J., et al. "Event representations for automated story generation with deep neural nets.“ Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

10/8/2024 MODULE 2 REVIEW

Review: Story
Realization
Extract events from stories

Generate the plot using a seq2seq network

Use an ensemble of methods to find the best
sentence given an event

Get a confidence score from each model, and
accept the sentence if it’s above a threshold

13

Ammanabrolu, P., Tien, E., Cheung, W., Luo, Z., Ma, W., Martin, L. J., & Riedl, M. O. (2020). Story Realization: Expanding Plot Events into
Sentences. AAAI Conference on Artificial Intelligence (AAAI), 34(5), 7375–7382. https://ojs.aaai.org//index.php/AAAI/article/view/6232

10/8/2024 MODULE 2 REVIEW

Review: Story Cloze Test
Gina was worried the cookie dough in the tube would be gross.

She was very happy to find she was wrong.

The cookies from the tube were as good as from scratch.

Gina intended to only eat 2 cookies and save the rest.

A. Gina liked the cookies so much she ate them all in one sitting.

B. Gina gave the cookies away at her church.

14

Mostafazadeh, N., Chambers, N., He, X., Parikh, D., Batra, D., Vanderwende, L., Kohli, P., & Allen, J. (2016). A Corpus and Cloze Evaluation for Deeper Understanding of Commonsense Stories. Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), 839–849. http://www.aclweb.org/anthology/N16-1098

10/8/2024 MODULE 2 REVIEW

CMSC 491/691: Interactive
Fiction and Text
Generation

Search and
Planning
AIMA Chapters 3 and 7

Learning Objectives

Remember how to setup a search problem
Review basic types of tree search algorithms
Define & implement a search problem (for Action Castle)

Problem-Solving Agents
A problem-solving agent must plan.
The computational process that it
undertakes is called search.
It will consider a sequence of actions
that form a path to a goal state.
Such a sequence is called a solution.

1. take pole
2. go out
3. go south
4. catch fish with pole
5. go north
6. pick rose
7. go north
8. go up
9. get branch
10.go down
11.go east
12.give the troll

the fish

13.go east
14.hit guard with branch
15.get key
16.go east
17.get candle
18.go west
19.go down
20.light lamp
21.go down
22.light candle
23.read runes
24.get crown
25.go up

26.go up
27.go up
28.unlock door
29.go up
30.give rose to the princess
31.propose to the princess

32.down
33.down
34.east
35.east
36.wear crown
37.sit on throne

10/8/202
4 Module 2 Review 32

Review of Search Problems
AIMA 3.1-3.3

3310/8/202
4 Module 2 Review

Formal Definition of a Search Problem

1. States: a set S
2. An initial state si∈ S

3. Actions: a set A

∀ s Actions(s) = the set of actions that
can be executed in s.

4. Transition Model: ∀ s∀ a∈Actions(s)
Result(s, a) → sr

sr is called a successor of s

{si }∪ Successors(si)* = state space

5. Path cost (Performance Measure):
Must be additive, e.g. sum of distances,
number of actions executed, …

c(x,a,y) is the step cost, assumed ≥ 0

• (where action a goes from state x
to state y)

6. Goal test: Goal(s)

s is a goal state if Goal(s) is true.
Can be implicit, e.g. checkmate(s)

10/8/202
4 Module 2 Review 34

Vacuum World

States: A state of the world says which
objects are in which cells.
In a simple two cell version,
• the agent can be in one cell at a time
• each cell can have dirt or not

2 positions for agent * 22 possibilities for
dirt = 8 states.

With n cells, there are n*2n states.

10/8/202
4 Module 2 Review 35

Vacuum World

States: A state of the world says which
objects are in which cells.
In a simple two cell version,
• the agent can be in one cell at a time
• each cell can have dirt or not

2 positions for agent * 22 possibilities for
dirt = 8 states.

With n cells, there are n*2n states.

10/8/202
4 Module 2 Review 36

Vacuum World

States: A state of the world says which
objects are in which cells.
In a simple two cell version,
• the agent can be in one cell at a time
• each cell can have dirt or not

2 positions for agent * 22 possibilities for
dirt = 8 states.

With n cells, there are n*2n states.

One state is
designated as

the initial state

Goal states: States
where everything is

clean.

Goal states: States
where everything is

clean.

10/8/202
4 Module 2 Review 37

Vacuum World

Actions:
• Suck
• Move Left
• Move Right
• (Move Up)
• (Move Down)

Transition:
Suck – removes dirt
Move – moves in that direction, unless
agent hits a wall, in which case it stays put.

Move Right Suck

10/8/202
4 Module 2 Review 38

Vacuum World

Suck

Right

Left

Right

Left

Suck

Right

Left

Suck Suck

Right

Left

10/8/202
4 Module 2 Review 39

Vacuum World

Suck

Right

Left

Right

Left

Suck

Right

Left

Suck Suck

Right

Left

Action cost:
Uniform (all actions
are equal cost)

10/8/202
4 Module 2 Review 40

Suck

Vacuum World

Suck

Right

Left

Right

Left

Suck

Right

Left

Suck

Right

Left

Path cost:
Sum of all action costs
along a path

10/8/202
4 Module 2 Review 41

Suck

Vacuum World

Suck

Right

Left

Right

Left

Suck

Right

Left

Suck

Right

Left

Initial
state

Goal states

Solution:
A path from the initial
state to a goal state

10/8/202
4 Module 2 Review 42

Search Algorithms

4310/8/202
4 Module 2 Review

Useful Concepts

State space: the set of all states reachable from the initial state by any
sequence of actions

• When several operators can apply to each state, this gets large very quickly
• Might be a proper subset of the set of configurations

Path: a sequence of actions leading from one state sj to another state sk

Solution: a path from the initial state si to a state sf that satisfies the goal test

Search tree: a way of representing the paths that a search algorithm has
explored. The root is the initial state, leaves of the tree are successor states.

Frontier: those states that are available for expanding (for applying legal
actions to)

4410/8/202
4 Module 2 Review

Solutions and Optimal Solutions

A solution is a sequence of actions from the initial state to a goal
state.

Optimal Solution: A solution is optimal if no solution has a lower
path cost.

4510/8/202
4 Module 2 Review

Basic search algorithms: Tree Search

Generalized algorithm to solve search problems

Enumerate in some order all possible paths from the initial state
• Here: search through explicit tree generation

• ROOT= initial state.
• Nodes in search tree generated through transition model
• Tree search treats different paths to the same node as distinct

4610/8/202
4 Module 2 Review

Generalized tree search

The strategy determines
search process!

function TREE-SEARCH(problem, strategy) return a solution or failure
Initialize frontier to the initial state of the problem
do

if the frontier is empty then return failure
choose leaf node for expansion according to strategy & remove from frontier
if node contains goal state then return solution
else expand the node and add resulting nodes to the frontier

10/8/202
4 Module 2 Review 47

7 2 4
5 6
8 3 1

7 4
5 2 6
8 3 1

7 2 4
5 6

8 3 1

7 2 4
5 6
8 3 1

7 4
5 2 6
8 3 1

7 4
5 2 6
8 3 1

7 2 4
8 5 6

3 1

2 4
7 5 6
8 3 1

7 2 4
5 6 1
8 3

7 2
5 6 4
8 3 1

8-Puzzle Search Tree

48

7 2 4
5 6
8 3 1

7 2 4
5 6
8 3 1

7 2 4
5 6
8 3 1

Start State

Max Branching Factor = 4

Action:
Move Blank
Tie Left

Action: Up Action: Right
Action: Down

Up Down Right

10/8/202
4 Module 2 Review

7 2 4
5 6
8 3 1

7 4
5 2 6
8 3 1

7 2 4
5 6

8 3 1

7 2 4
5 6
8 3 1

7 4
5 2 6
8 3 1

7 4
5 2 6
8 3 1

7 2 4
8 5 6

3 1

2 4
7 5 6
8 3 1

7 2 4
5 6 1
8 3

7 2
5 6 4
8 3 1

8-Puzzle Search Tree

49

7 2 4
5 6
8 3 1

7 2 4
5 6
8 3 1

7 2 4
5 6
8 3 1

Repeated
State

10/8/202
4 Module 2 Review

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do

if the frontier is empty then return failure
choose a leaf nose and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
initialize the explored set to be empty
loop do

if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier of explored set

Graph Search vs Tree Search

10/8/202
4 Module 2 Review

Search Strategies

Several classic search algorithms differ only by the order of how they expand
their search trees

You can implement them by using different queue data structures

Depth-first search = LIFO queue
Breadth-first search = FIFO queue
Greedy best-first search or A* search = Priority queue

5110/8/202
4 Module 2 Review

7 2 4
5 6
8 3 1

7 4
5 2 6
8 3 1

7 4
5 2 6
8 3 1

7 2 4
5 6 1
8 3

7 2
5 6 4
8 3 1

8-Puzzle Breadth-first search

52

7 2 4
5 6
8 3 1

7 2 4
5 6
8 3 1

Start State

7 2 4
5 6

8 3 1

Action:
Move Blank
Tie Left

7 4
5 2 6
8 3 1

Action: Up

7 2 4
5 6
8 3 1

Action: Right
Action: Down

2 4
7 5 6
8 3 1

Up

7 2 4
8 5 6

3 1

Down

7 2 4
5 6
8 3 1

Right

10/8/202
4 Module 2 Review

Search Algorithms

Dimensions for evaluation
• Completeness- always find the solution?
• Optimality - finds a least cost solution (lowest path cost) first?
• Time complexity - # of nodes generated (worst case)
• Space complexity - # of nodes simultaneously in memory (worst case)

Time/space complexity variables
• b, maximum branching factor of search tree
• d, depth of the shallowest goal node
• m, maximum length of any path in the state space (potentially ∞)

5310/8/202
4 Module 2 Review

Properties of breadth-first search

Complete? Yes (if b is finite)
Optimal? Yes, if cost = 1 per step

(not optimal in general)
Time Complexity? 1+b+b2+b3+… +bd = O(bd)
Space Complexity? O(bd) (keeps every node in memory)

Time/space complexity variables
• b, maximum branching factor of search tree
• d, depth of the shallowest goal node
• m, maximum length of any path in the state space (potentially ∞)

5410/8/202
4 Module 2 Review

BFS versus DFS

Breadth-first
🗹🗹 Complete,
🗹🗹 Optimal
🗷🗷 but uses O(bd) space

Depth-first
🗷🗷 Not complete unless m is bounded
🗷🗷 Not optimal
🗷🗷 Uses O(bm) time; terrible if m >> d
🗹🗹 but only uses O(b*m) space

55

Time/space complexity variables
b, maximum branching factor of search tree
d, depth of the shallowest goal node
m, maximum length of any path in the state

space (potentially ∞)

10/8/202
4 Module 2 Review

Exponential Space (and time) Is Not Good...

• Exponential complexity uninformed search problems cannot be solved for any
but the smallest instances.

• (Memory requirements are a bigger problem than execution time.)

Assumes b=10, 1M nodes/sec, 1000 bytes/node

56

DEPTH NODES TIME MEMORY

2 110 0.11 milliseconds 107 kilobytes

4 11110 11 milliseconds 10.6 megabytes

6 106 1.1 seconds 1 gigabytes

8 108 2 minutes 103 gigabytes

10 1010 3 hours 10 terabytes

12 1012 13 days 1 petabytes

14 1014 3.5 years 99 petabytles

10/8/202
4 Module 2 Review

Action Castle

5710/8/202
4 Module 2 Review

Art: Formulating a Search Problem
Decide:

Which properties matter & how to represent
• Initial State, Goal State, Possible Intermediate States

Which actions are possible & how to represent
• Operator Set: Actions and Transition Model

Which action is next
• Path Cost Function

Formulation greatly affects combinatorics of search space and therefore
speed of search

5810/8/202
4 Module 2 Review

Action Castle Map Navigation

Let’s consider the sub-task of navigating from one
location to another.

Formulate the search problem
• States: locations in the game
• Actions: move between connected locations
• Goal: move to a particular location like the

Throne Room
• Performance measure: minimize number of

moves to arrive at the goal

Find a solution
• Algorithm that returns sequence of actions

to get from the start sate to the goal.

10/8/202
4 Module 2 Review 59

The frontier tracks order of unexpanded
search nodes. Here we’re using a FIFO queue

The visited dictionary
prevents us from
revising states.

get_available_actions() to return all
commands that could be used here.

The parser can execute this command
to get the resulting state.

Check to see if this state satisfies the
goal test, if so, return the command

sequence that got us here.

TODO: implement
get_state()

TODO: implement goal_test()

TODO: implement get_available_actions()

Tip: We can store multiple objects
on the frontier as a tuple.

Tip: To be used a key in the dictionary get_state()
must return an immutable object

Tip: use deepcopy here

Tip: For BFS, apply the goal test before
putting the new item on the frontier

Action Castle
Let’s consider the full game.

Actions

Start State

Transitions

State Space

Goal test

10/8/202
4 Module 2 Review 62

Actions
Go

Move to a location
Get

Add an item to inventory
Special

Perform a special action
with an item like “Catch
fish with pole”

Drop
Leave an item in current
location

10/8/202
4 Module 2 Review 63

State Info
Location of Player
Items in their inventory
Location of all items /

NPCs
Blocks like
• Troll guarding bridge,
• Locked door to tower,
• Guard barring entry to

castle

10/8/202
4 Module 2 Review 64

In-Class Activity

https://laramartin.net/interactive-fiction-class//in_class_activities/search/action-
castle-search.html

https://bit.ly/4eSjws8

10/8/202
4 Module 2 Review 65

https://laramartin.net/interactive-fiction-class/in_class_activities/search/action-castle-search.html
https://laramartin.net/interactive-fiction-class/in_class_activities/search/action-castle-search.html
https://bit.ly/4eSjws8

	Schedule
	Module 2 Review
	Review: Causal Links
	Review: Script
	Review: Principle of Minimal Departure
	Review: Linking Events
	Review: What are procedures?
	Review: Intent Detection
	Review: Procedures are Hierarchical
	Review: Plan-and-Write
	Review: Guided Open Story Generation Using Probabilistic Graphical Models
	Review: Example of a Probabilistic Event Representation
	Review: Story Realization
	Review: Story Cloze Test
	Search and Planning
	Learning Objectives
	Problem-Solving Agents
	Review of Search Problems
	Formal Definition of a Search Problem
	Vacuum World
	Vacuum World
	Vacuum World
	Vacuum World
	Vacuum World
	Vacuum World
	Vacuum World
	Vacuum World
	Search Algorithms
	Useful Concepts
	Solutions and Optimal Solutions
	Basic search algorithms: Tree Search
	Generalized tree search
	8-Puzzle Search Tree
	8-Puzzle Search Tree
	Graph Search vs Tree Search
	Search Strategies
	8-Puzzle Breadth-first search
	Search Algorithms
	Properties of breadth-first search
	BFS versus DFS
	Exponential Space (and time) Is Not Good...
	Action Castle
	Art: Formulating a Search Problem
	Action Castle Map Navigation
	Slide Number 60
	Slide Number 61
	Action Castle
	Actions
	State Info
	In-Class Activity

