
CMSC 491/691: Interactive
Fiction and Text
Generation

Planning

Lara J. Martin

1Planning10/10/2024

Some slides borrowed from Chris Callison-Burch and Stephen Ware

Learning objectives

• Identify the components of a planning problem

• Distinguish between search and planning

• Determine how planning can be used in IF

• Summarize how planning has appeared in story generation through the years

Classical Planning

AIMA Chapter 11

310/10/2024 Planning

Classical Planning

If an environment is:

• Deterministic

• Fully observable

The solution to any problem in such an
environment is a fixed sequence of actions.

In environments that are

• Nondeterministic or

• Partially observable

The solution must recommend different
future actions depending on the what
percepts it receives. This could be in the
form of a branching strategy.

The task of finding a sequence of action to accomplish a goal in a deterministic, fully-
observable, discrete, static environment.

10/10/2024 Planning 4

(:action go
 :parameters (?dir - direction
 ?p - player
 ?l1 - location ?l2 - location)
 :precondition (and
 (at ?p ?l1)
 (connected ?l1 ?dir ?l2)
 (not (blocked ?l1 ?dir ?l2)))
 :effect (and
 (at ?p ?l2)
 (not (at ?p ?l1)))
)

Representation Language

Planning Domain Definition Language (PDDL) express actions as a schema

Action name
Variables

Preconditions

Effects

Preconditions and effects are
conjunctions of logical

sentences

These logical sentences are literals –
positive or negated atomic sentences

Planning 510/10/2024

State Representation

In PDDL, a state is represented as a conjunction of logical sentences that are
ground atomic fluents. PDDL uses database semantics.

Ground means
they contain no

variables

Atomic sentences
contain just a

single predicate

Fluent means an aspect
of the world that can

change over time.

Action Schema

has variables

State Representation

arguments are constants

fluents may change over time

Closed world assumption.
Any fluent not mentioned

is false. Unique names
are distinct.

(:action go
 :parameters (?dir - direction ?p - player ?l1 - location ?l2 - location)
 :precondition (and (at ?p ?l1) (connected ?l1 ?dir ?l2) (not (blocked ?l1 ?dir ?l2)))
 :effect (and (at ?p ?l2) (not (at ?p ?l1)))
)

(connected cottage out gardenpath)
(connected gardenpath in cottage)
(connected gardenpath south fishingpond)
(connected fishingpond north gardenpath)
(at npc cottage)

Planning 610/10/2024

Successor States

A ground action is applicable if if every positive literal in the precondition is true,
and every negative literal in the precondition is false

Ground Action

no variables

Initial State

Result

New state reflecting

the effect of applying

the ground action

(:action go
 :parameters (out, npc, cottage, gardenpath)
 :precondition (and (at npc cottage) (connected cottage out gardenpath)
 (not (blocked cottage out gardenpath)))
 :effect (and (at npc gardenpath) (not (at npc cottage)))
)

(connected cottage out gardenpath)
(connected gardenpath in cottage)
(connected gardenpath south fishingpond)
(connected fishingpond north gardenpath)
(at npc cottage)

Negative literals in the effects
are kept in a delete list DEL(),
and positive literals are kept

in an add list ADD()

(connected cottage out gardenpath)
(connected gardenpath in cottage)
(connected gardenpath south fishingpond)
(connected fishingpond north gardenpath)
(at npc gardenpath)

Planning 710/10/2024

Domain

(define (problem navigate-to-location)
 (:domain action-castle)

 (:objects
 npc - player
 cottage gardenpath fishingpond gardenpath
 windingpath talltree drawbridge courtyard
 towerstairs tower dungeonstairs dungeon
 greatfeastinghall throneroom - location
 in out north south east west up down - direction
)

 (:init
 (at npc cottage)
 (connected cottage out gardenpath)
 (connected gardenpath in cottage)
 (connected gardenpath south fishingpond)
 (connected fishingpond north gardenpath)
)

 (:goal (and (at npc throneroom)))
)

(define (domain action-castle)
 (:requirements :strips :typing)
 (:types player location direction item)

 (:action go
 :parameters (?dir - direction ?p - player
 ?l1 - location ?l2 - location)
 :precondition (and (at ?p ?l1)
 (connected ?l1 ?dir ?l2)
 (not (blocked ?l1 ?dir ?l2)))
 :effect (and (at ?p ?l2) (not (at ?p ?l1)))
)

 (:action get
 :parameters (?item - item
 ?p - player
 ?l1 - location)
 :precondition (and (at ?p ?l1)
 (at ?item ?l1))
 :effect (and (inventory ?p ?item)
 (not (at ?item ?l1)))
)
)

Problem
Set of Action

Schema

Initial State

Goal
Planning 810/10/2024

Algorithms for Classical Planning

We can apply BFS to the initial state through possible states looking for a goal.

An advantage of the declarative representation of action schemas is that we can
also search backwards.

Start with a goal and work backwards towards the initial state.

In our Action Castle example, this would help us with the branching problem that the drop
action introduced. If we work backwards from the goal, then we realize that we don’t
ever need to drop an item for the correct solution.

Why work

backwards?

Planning 910/10/2024

Forward State-Space Search for Planning

At(Player, Cottage)

At(Pole, Cottage)

At(Player, Garden Path)

At(Pole Cottage)

At(Player, Cottage)

Inventory(Pole)

Go(Player, Cottage, Out, Fishing Pond)

Get Pole

Go South

At(Player, Fishing Pond)

At(Pole, Cottage)

At(Player, Garden Path)

Inventory(Pole)

Go Out

Go South At(Player, Fishing Pond)

Inventory(Pole)

Go Fish

At(Player, Fishing Pond)

Inventory(Pole)

Inventory(Fish)

At(Player, Garden Path)

At(Pole, Cottage)

Go North

Ground action
with no variables

Actions must be
applicable.

Planning 1010/10/2024

Backward State-Space Search for Planning
aka Regression Search

At(Player, Cottage)

At(Pole, Cottage)

At(Player, Cottage)

Inventory(Pole)

Get Pole
Go South

At(Player, ?loc)

HasPond(?loc)

Inventory(Pole)
Go Fish

Inventory(Fish)

Start with the
goal, work

backwards to
initial state

Pick relevant
actions.

Given a goal g and action a, the regression from g to a gives
a state g’ description whose literals are given by:
POS(g’) = (POS(g)-ADD(a)) U POS(Preconditions(a))
NEG(g’) = (NEG(g)-DEL(a)) U NEG(Preconditions(a))

Negative literals in the
effects are kept in a

delete list DEL

Positive literals in
the effects are

kept in an ADD list

At(Player, Garden Path)

HasPond(Fishing Pond)

Connected(GP, South, FP)

Inventory(Pole)

Go Out

Planning 1110/10/2024

Heuristics for Planning

Neither forward nor backward search is efficient without good heuristics.

In search a heuristic function h(s) estimates the distance from a state to the goal.

Admissible heuristics never over-estimate the true distance, and can be used with
A* search to find optimal solutions.

Admissible heuristics can be derived from a relaxed problem that is easier to solve.

For the ignore preconditions heuristic relaxes the problem.

Planning 1210/10/2024

Hierarchical Planning

Instead of using atomic actions, we can define actions at higher levels of
abstraction.

Hierarchical decomposition organizes actions into high-level functions, composed
of more fine-grained function, composed of atomic actions.

Plan out sequence of high level actions, reclusively refine the plan until we’ve got
atomic actions.

Tricky to ensure that the
resulting plan is optimal.

Planning 1310/10/2024

Suck

Review: Search
Vacuum World

Suck

Right

Left

Right

Left

Suck

Right

Left

Suck

Right

Left

Initial
state

Goal states

Solution:

A path from the initial
state to a goal state

10/8/2024 Module 2 Review 14

Think-Pair-Share: Search vs Planning

Planning 1510/10/2024

Planning Search

What are some of the differences of search vs planning?

Planning and Games

16Planning10/10/2024

Planning can be used for AI characters

In our current text adventure games, all of the non-player characters are boring!

• Why doesn’t the princess try to escape the tower and claim the throne herself?

• Why doesn’t the troll come hunting for food and eat us or the guard?

• Why is the ghost of the king stuck in the dungeon?

We could give each of them goals and have them try to plan out and play the game
alongside the player.

Planning 1710/10/2024

Generating Puzzles

In HW2, we were able to generate descriptions of locations and items.

Could we use planning to automatically generate:

1. Puzzles?

2. Special actions?

Let's say a player needs a sword and we decide to make the game more challenging
by not putting one anywhere in the game.

Could we generate an action that results in the creation of a sword?

Action: forge a sword

Effects: a sword is created

Preconditions: molten metal, a cast of a sword, an anvil, a hammer

Planning 1810/10/2024

Planning and Stories

19Planning10/10/2024

UNIVERSE

20Planning10/10/2024

M. Lebowitz, “Story-Telling as Planning and Learning,” Poetics, vol. 14, no. 6, pp. 483–502, Dec. 1985, doi: 10.1016/0304-422X(85)90015-4.

https://doi.org/10.1016/0304-422X(85)90015-4

UNIVERSE (with multiple goals)

21Planning10/10/2024

M. Lebowitz, “Planning Stories,” Annual Conference of the Cognitive Science Society (CogSci), vol. 1, no. 2.2, pp. 234–242, Jul.

1987, Available: https://cognitivesciencesociety.org/wp-content/uploads/2019/01/cogsci_9.pdf

https://cognitivesciencesociety.org/wp-content/uploads/2019/01/cogsci_9.pdf

Partial Order Causal Link (POCL) planning

22Planning10/10/2024

S. G. Ware and R. M. Young, “CPOCL: A Narrative Planner Supporting Conflict,” AAAI Conference on Artificial Intelligence and

Interactive Digital Entertainment (AIIDE), vol. 7, no. 1, pp. 97–102, 2011, doi: 10.1609/aiide.v7i1.12428.

Conflict
POCL

https://doi.org/10.1609/aiide.v7i1.12428

Sabre
A Narrative Planner Supporting

Intention and Deep Theory of Mind

Stephen G. Ware

Cory Siler

Narrative Planning

A single decision maker

creates the appearance
of a multi-agent system.

Intentions and Beliefs

C: Classical
Actions are

actually possible.

Intentions and Beliefs

• Riedl and Young, “Narrative planning: balancing plot and character,” in JAIR 2010
• Teutenberg and Porteous, “Efficient intent-based narrative generation…,” in AAMAS 2013
• Ware and Young, “Glaive: a state-space narrative planner…,” in AIIDE 2014

C: Classical
Actions are

actually possible.

I: Intention
Actions can achieve

agent’s goal.

Intentions and Beliefs

C: Classical
Actions are

actually possible.

I: Intention
Actions can increase

agent’s utility.

Intentions and Beliefs

C: Classical
Actions are

actually possible.

B: Belief
Agent believes the

actions are possible.

I: Intention
Actions can increase

agent’s utility.

• Eger and Martens, “Character beliefs in story generation,” INT 2017
• Thorne and Young, “Generating stories … by modeling false character beliefs,” in INT 2017
• Shirvani, Ware, and Farrell, “A possible worlds model of belief…,” in AIIDE 2017

I: Intention
Increases utility

I∩B: Believable
Agent believes actions can

increase utility.

C: Classical
Actions are

actually possible.

B: Belief
Agent believes the

actions are possible.

Intentions and Beliefs

• Shirvani, Farrell, and Ware, “Combining intentionality and belief…,” in AIIDE 2018

Syntax and Features

Fluents

𝑎𝑡 𝑇𝑜𝑚 = 𝐶𝑜𝑡𝑡𝑎𝑔𝑒

Helmert, “The Fast Downward planning system,” in JAIR 2006

Fluents

𝑎𝑡 𝑇𝑜𝑚 = 𝐶𝑜𝑡𝑡𝑎𝑔𝑒

Helmert, “The Fast Downward planning system,” in JAIR 2006

Fluents

𝑎𝑡 𝑇𝑜𝑚 = 𝐶𝑜𝑡𝑡𝑎𝑔𝑒

𝑝𝑎𝑡ℎ 𝐶𝑜𝑡𝑡𝑎𝑔𝑒,𝑀𝑎𝑟𝑘𝑒𝑡 = ⊤

Fluents

𝑎𝑡 𝑇𝑜𝑚 = 𝐶𝑜𝑡𝑡𝑎𝑔𝑒

𝑝𝑎𝑡ℎ 𝐶𝑜𝑡𝑡𝑎𝑔𝑒,𝑀𝑎𝑟𝑘𝑒𝑡 = ⊤

𝑤𝑒𝑎𝑙𝑡ℎ(𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡) = 3

Fluents

𝑎𝑡 𝑇𝑜𝑚 = 𝐶𝑜𝑡𝑡𝑎𝑔𝑒

𝑝𝑎𝑡ℎ 𝐶𝑜𝑡𝑡𝑎𝑔𝑒,𝑀𝑎𝑟𝑘𝑒𝑡 = ⊤

𝑤𝑒𝑎𝑙𝑡ℎ(𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡) = 3

𝑏𝑒𝑙𝑖𝑒𝑣𝑒𝑠(𝑇𝑜𝑚,𝑤𝑒𝑎𝑙𝑡ℎ(𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡)) = 2

Fluents

𝑎𝑡 𝑇𝑜𝑚 = 𝐶𝑜𝑡𝑡𝑎𝑔𝑒

𝑝𝑎𝑡ℎ 𝐶𝑜𝑡𝑡𝑎𝑔𝑒,𝑀𝑎𝑟𝑘𝑒𝑡 = ⊤

𝑤𝑒𝑎𝑙𝑡ℎ(𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡) = 3

𝑏𝑒𝑙𝑖𝑒𝑣𝑒𝑠(𝑇𝑜𝑚,𝑤𝑒𝑎𝑙𝑡ℎ(𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡)) = 2

𝑏𝑒𝑙𝑖𝑒𝑣𝑒𝑠(𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡, 𝑏𝑒𝑙𝑖𝑒𝑣𝑒𝑠(𝑇𝑜𝑚,𝑤𝑒𝑎𝑙𝑡ℎ 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡)) = 3

Theory of Mind

• Arbitrarily deep

what 𝑥 believes 𝑦 believes 𝑧 believes…

• No uncertainty

Everyone commits to beliefs, which can be wrong.

Other Syntactical Features

• Negation

• Disjunction

• Conditional Effects

• First Order Quantifiers

Actions

𝒃𝒖𝒚(𝑻𝒐𝒎,𝑷𝒐𝒕𝒊𝒐𝒏,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

Actions

𝒂: 𝒃𝒖𝒚(𝑻𝒐𝒎,𝑷𝒐𝒕𝒊𝒐𝒏,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

Actions

𝒂: 𝒃𝒖𝒚(𝑻𝒐𝒎,𝑷𝒐𝒕𝒊𝒐𝒏,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

PRE 𝑎 :

Actions

𝒂: 𝒃𝒖𝒚(𝑻𝒐𝒎,𝑷𝒐𝒕𝒊𝒐𝒏,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

PRE 𝑎 : 𝑎𝑡 𝑇𝑜𝑚 = 𝑀𝑎𝑟𝑘𝑒𝑡

Actions

𝒂: 𝒃𝒖𝒚(𝑻𝒐𝒎,𝑷𝒐𝒕𝒊𝒐𝒏,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

PRE 𝑎 : 𝑎𝑡 𝑇𝑜𝑚 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧ 𝑎𝑡 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 = 𝑀𝑎𝑟𝑘𝑒𝑡

Actions

𝒂: 𝒃𝒖𝒚(𝑻𝒐𝒎,𝑷𝒐𝒕𝒊𝒐𝒏,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

PRE 𝑎 : 𝑎𝑡 𝑇𝑜𝑚 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧ 𝑎𝑡 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧

𝑎𝑡 𝑃𝑜𝑡𝑖𝑜𝑛 = 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡

Actions

𝒂: 𝒃𝒖𝒚(𝑻𝒐𝒎,𝑷𝒐𝒕𝒊𝒐𝒏,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

PRE 𝑎 : 𝑎𝑡 𝑇𝑜𝑚 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧ 𝑎𝑡 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧

𝑎𝑡 𝑃𝑜𝑡𝑖𝑜𝑛 = 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 ∧ 𝑤𝑒𝑎𝑙𝑡ℎ 𝑇𝑜𝑚 ≥ 1

Actions

𝒂: 𝒃𝒖𝒚(𝑻𝒐𝒎,𝑷𝒐𝒕𝒊𝒐𝒏,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

PRE 𝑎 : 𝑎𝑡 𝑇𝑜𝑚 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧ 𝑎𝑡 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧

𝑎𝑡 𝑃𝑜𝑡𝑖𝑜𝑛 = 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 ∧ 𝑤𝑒𝑎𝑙𝑡ℎ 𝑇𝑜𝑚 ≥ 1

EFF 𝑎 :

Actions

𝒂: 𝒃𝒖𝒚(𝑻𝒐𝒎,𝑷𝒐𝒕𝒊𝒐𝒏,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

PRE 𝑎 : 𝑎𝑡 𝑇𝑜𝑚 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧ 𝑎𝑡 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧

𝑎𝑡 𝑃𝑜𝑡𝑖𝑜𝑛 = 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 ∧ 𝑤𝑒𝑎𝑙𝑡ℎ 𝑇𝑜𝑚 ≥ 1

EFF 𝑎 : 𝑎𝑡 𝑃𝑜𝑡𝑖𝑜𝑛 = 𝑇𝑜𝑚

Actions

𝒂: 𝒃𝒖𝒚(𝑻𝒐𝒎,𝑷𝒐𝒕𝒊𝒐𝒏,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

PRE 𝑎 : 𝑎𝑡 𝑇𝑜𝑚 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧ 𝑎𝑡 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧

𝑎𝑡 𝑃𝑜𝑡𝑖𝑜𝑛 = 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 ∧ 𝑤𝑒𝑎𝑙𝑡ℎ 𝑇𝑜𝑚 ≥ 1

EFF 𝑎 : 𝑎𝑡 𝑃𝑜𝑡𝑖𝑜𝑛 = 𝑇𝑜𝑚 ∧ 𝑤𝑒𝑎𝑙𝑡ℎ 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 += 1

Actions

𝒂: 𝒃𝒖𝒚(𝑻𝒐𝒎,𝑷𝒐𝒕𝒊𝒐𝒏,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

PRE 𝑎 : 𝑎𝑡 𝑇𝑜𝑚 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧ 𝑎𝑡 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧

𝑎𝑡 𝑃𝑜𝑡𝑖𝑜𝑛 = 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 ∧ 𝑤𝑒𝑎𝑙𝑡ℎ 𝑇𝑜𝑚 ≥ 1

EFF 𝑎 : 𝑎𝑡 𝑃𝑜𝑡𝑖𝑜𝑛 = 𝑇𝑜𝑚 ∧ 𝑤𝑒𝑎𝑙𝑡ℎ 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 += 1 ∧

𝑤𝑒𝑎𝑙𝑡ℎ 𝑇𝑜𝑚 −= 1

Actions

𝒂: 𝒃𝒖𝒚(𝑻𝒐𝒎,𝑷𝒐𝒕𝒊𝒐𝒏,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

PRE 𝑎 : 𝑎𝑡 𝑇𝑜𝑚 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧ 𝑎𝑡 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧

𝑎𝑡 𝑃𝑜𝑡𝑖𝑜𝑛 = 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 ∧ 𝑤𝑒𝑎𝑙𝑡ℎ 𝑇𝑜𝑚 ≥ 1

EFF 𝑎 : 𝑎𝑡 𝑃𝑜𝑡𝑖𝑜𝑛 = 𝑇𝑜𝑚 ∧ 𝑤𝑒𝑎𝑙𝑡ℎ 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 += 1 ∧

𝑤𝑒𝑎𝑙𝑡ℎ 𝑇𝑜𝑚 −= 1

CON 𝑎 :

Actions

𝒂: 𝒃𝒖𝒚(𝑻𝒐𝒎,𝑷𝒐𝒕𝒊𝒐𝒏,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

PRE 𝑎 : 𝑎𝑡 𝑇𝑜𝑚 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧ 𝑎𝑡 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧

𝑎𝑡 𝑃𝑜𝑡𝑖𝑜𝑛 = 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 ∧ 𝑤𝑒𝑎𝑙𝑡ℎ 𝑇𝑜𝑚 ≥ 1

EFF 𝑎 : 𝑎𝑡 𝑃𝑜𝑡𝑖𝑜𝑛 = 𝑇𝑜𝑚 ∧ 𝑤𝑒𝑎𝑙𝑡ℎ 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 += 1 ∧

𝑤𝑒𝑎𝑙𝑡ℎ 𝑇𝑜𝑚 −= 1

CON 𝑎 : 𝑇𝑜𝑚,𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡

Actions

𝒂: 𝒃𝒖𝒚(𝑻𝒐𝒎,𝑷𝒐𝒕𝒊𝒐𝒏,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

PRE 𝑎 : 𝑎𝑡 𝑇𝑜𝑚 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧ 𝑎𝑡 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧

𝑎𝑡 𝑃𝑜𝑡𝑖𝑜𝑛 = 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 ∧ 𝑤𝑒𝑎𝑙𝑡ℎ 𝑇𝑜𝑚 ≥ 1

EFF 𝑎 : 𝑎𝑡 𝑃𝑜𝑡𝑖𝑜𝑛 = 𝑇𝑜𝑚 ∧ 𝑤𝑒𝑎𝑙𝑡ℎ 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 += 1 ∧

𝑤𝑒𝑎𝑙𝑡ℎ 𝑇𝑜𝑚 −= 1

CON 𝑎 : 𝑇𝑜𝑚,𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡

OBS(𝑎, 𝑐):

Actions

𝒂: 𝒃𝒖𝒚(𝑻𝒐𝒎,𝑷𝒐𝒕𝒊𝒐𝒏,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

PRE 𝑎 : 𝑎𝑡 𝑇𝑜𝑚 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧ 𝑎𝑡 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧

𝑎𝑡 𝑃𝑜𝑡𝑖𝑜𝑛 = 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 ∧ 𝑤𝑒𝑎𝑙𝑡ℎ 𝑇𝑜𝑚 ≥ 1

EFF 𝑎 : 𝑎𝑡 𝑃𝑜𝑡𝑖𝑜𝑛 = 𝑇𝑜𝑚 ∧ 𝑤𝑒𝑎𝑙𝑡ℎ 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 += 1 ∧

𝑤𝑒𝑎𝑙𝑡ℎ 𝑇𝑜𝑚 −= 1

CON 𝑎 : 𝑇𝑜𝑚,𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡

OBS(𝑎, 𝑐): 𝑎𝑡(𝑐) = 𝑀𝑎𝑟𝑘𝑒𝑡

Triggers

𝒕: 𝒔𝒆𝒆(𝑻𝒐𝒎,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

PRE 𝑡 :

EFF 𝑡 :

Triggers

𝒕: 𝒔𝒆𝒆(𝑻𝒐𝒎,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

PRE 𝑡 : 𝑎𝑡 𝑇𝑜𝑚 = 𝑀𝑎𝑟𝑘𝑒𝑡

EFF 𝑡 :

Triggers

𝒕: 𝒔𝒆𝒆(𝑻𝒐𝒎,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

PRE 𝑡 : 𝑎𝑡 𝑇𝑜𝑚 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧ 𝑎𝑡 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 = 𝑀𝑎𝑟𝑘𝑒𝑡

EFF 𝑡 :

Triggers

𝒕: 𝒔𝒆𝒆(𝑻𝒐𝒎,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

PRE 𝑡 : 𝑎𝑡 𝑇𝑜𝑚 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧ 𝑎𝑡 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧

𝑏𝑒𝑙𝑖𝑒𝑣𝑒𝑠(𝑇𝑜𝑚, 𝑎𝑡 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡) ≠ 𝑀𝑎𝑟𝑘𝑒𝑡

EFF 𝑡 :

Triggers

𝒕: 𝒔𝒆𝒆(𝑻𝒐𝒎,𝑴𝒆𝒓𝒄𝒉𝒂𝒏𝒕,𝑴𝒂𝒓𝒌𝒆𝒕)

PRE 𝑡 : 𝑎𝑡 𝑇𝑜𝑚 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧ 𝑎𝑡 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧

𝑏𝑒𝑙𝑖𝑒𝑣𝑒𝑠(𝑇𝑜𝑚, 𝑎𝑡 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡) ≠ 𝑀𝑎𝑟𝑘𝑒𝑡

EFF 𝑡 : 𝑏𝑒𝑙𝑖𝑒𝑣𝑒𝑠 𝑇𝑜𝑚, 𝑎𝑡 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡 = 𝑀𝑎𝑟𝑘𝑒𝑡

Pre-Processing

• Make action and trigger results explicit

• Detect and remove immutable fluents

• Detect and remove impossible actions and triggers

Results of an Event

After Tom buys the potion from the merchant…

• Tom has the potion.

• Tom knows he has the potion.

• The merchant knows Tom has the potion.

• Tom know that the merchant knows that he has the potion.

• … and so on.

Example Trigger: Two-Way Paths

𝒕: 𝒂𝒅𝒅_𝒑𝒂𝒕𝒉(𝒚, 𝒙)

PRE 𝑡 𝑝𝑎𝑡ℎ 𝑥, 𝑦 = ⊤ ∧ 𝑝𝑎𝑡ℎ 𝑦, 𝑥 = ⊥

EFF 𝑡 : 𝑝𝑎𝑡ℎ 𝑦, 𝑥 = ⊤

Example Trigger: Two-Way Paths

𝒕: 𝒂𝒅𝒅_𝒑𝒂𝒕𝒉(𝑴𝒂𝒓𝒌𝒆𝒕, 𝑪𝒐𝒕𝒕𝒂𝒈𝒆)

PRE 𝑡 : 𝑝𝑎𝑡ℎ 𝐶𝑜𝑡𝑡𝑎𝑔𝑒,𝑀𝑎𝑟𝑘𝑒𝑡 = ⊤ ∧

𝑝𝑎𝑡ℎ 𝑀𝑎𝑟𝑘𝑒𝑡, 𝐶𝑜𝑡𝑡𝑎𝑔𝑒 = ⊥

EFF 𝑡 : 𝑝𝑎𝑡ℎ 𝑀𝑎𝑟𝑘𝑒𝑡, 𝐶𝑜𝑡𝑡𝑎𝑔𝑒 = ⊤

Example Action: Walk

𝒂: 𝒘𝒂𝒍𝒌(𝑻𝒐𝒎,𝑴𝒂𝒓𝒌𝒆𝒕, 𝑪𝒐𝒕𝒕𝒂𝒈𝒆)

PRE 𝑎 : 𝑎𝑡 𝑇𝑜𝑚 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧

𝑝𝑎𝑡ℎ 𝑀𝑎𝑟𝑘𝑒𝑡, 𝐶𝑜𝑡𝑡𝑎𝑔𝑒 = ⊤

EFF 𝑎 : 𝑎𝑡 𝑇𝑜𝑚 = 𝐶𝑜𝑡𝑡𝑎𝑔𝑒

CON 𝑎 : 𝑇𝑜𝑚

OBS(𝑎, 𝑐): 𝑎𝑡 𝑐 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∨ 𝑎𝑡 𝑐 = 𝐶𝑜𝑡𝑡𝑎𝑔𝑒

Example Action: Walk

𝒂: 𝒘𝒂𝒍𝒌(𝑻𝒐𝒎,𝑴𝒂𝒓𝒌𝒆𝒕, 𝑪𝒐𝒕𝒕𝒂𝒈𝒆)

PRE 𝑎 : 𝑎𝑡 𝑇𝑜𝑚 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∧

𝑝𝑎𝑡ℎ 𝑀𝑎𝑟𝑘𝑒𝑡, 𝐶𝑜𝑡𝑡𝑎𝑔𝑒 = ⊤

EFF 𝑎 : 𝑎𝑡 𝑇𝑜𝑚 = 𝐶𝑜𝑡𝑡𝑎𝑔𝑒

CON 𝑎 : 𝑇𝑜𝑚

OBS(𝑎, 𝑐): 𝑎𝑡 𝑐 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∨ 𝑎𝑡 𝑐 = 𝐶𝑜𝑡𝑡𝑎𝑔𝑒

Example Action: Walk

𝒂: 𝒘𝒂𝒍𝒌(𝑻𝒐𝒎,𝑴𝒂𝒓𝒌𝒆𝒕, 𝑪𝒐𝒕𝒕𝒂𝒈𝒆)

PRE 𝑎 : 𝑎𝑡 𝑇𝑜𝑚 = 𝑀𝑎𝑟𝑘𝑒𝑡

EFF 𝑎 : 𝑎𝑡 𝑇𝑜𝑚 = 𝐶𝑜𝑡𝑡𝑎𝑔𝑒

CON 𝑎 : 𝑇𝑜𝑚

OBS(𝑎, 𝑐): 𝑎𝑡 𝑐 = 𝑀𝑎𝑟𝑘𝑒𝑡 ∨ 𝑎𝑡 𝑐 = 𝐶𝑜𝑡𝑡𝑎𝑔𝑒

Search

𝑠0

𝑠0

𝑠0 𝑠1Tom walks to the market.

𝛼 , 𝑠0 = 𝑠1Tom walks to the market.

𝑠1Tom walks to the market.𝑠0

𝑠2

𝛽 , 𝑠0 = 𝑠2

𝑠1Tom walks to the market.𝑠0

𝑠3𝑠2 I walk to the market.

𝑠1Tom walks to the market.𝑠0

𝑠3𝑠2 I walk to the market. 𝑠4
I buy the potion

from the merchant.

𝑠1Tom walks to the market.𝑠0

𝑠3𝑠2 I walk to the market. 𝑠4
I buy the potion

from the merchant.

Tom buys the potion
from me.

𝑠6𝑠5

𝑠1Tom walks to the market.𝑠0

𝑠3𝑠2 I walk to the market. 𝑠4
I buy the potion

from the merchant.

𝑠1Tom walks to the market.𝑠0

𝑠3𝑠2 I walk to the market. 𝑠4
I buy the potion

from the merchant.
𝑠7I walk home.

𝑠1Tom walks to the market.𝑠0

𝑠3𝑠2 I walk to the market. 𝑠4
I buy the potion

from the merchant.
𝑠7I walk home.

𝑠1Tom walks to the market.𝑠0

𝑠3𝑠2 I walk to the market. 𝑠4
I buy the potion

from the merchant.
𝑠7I walk home.

𝑠1Tom walks to the market.𝑠0
Tom buys the potion
from the merchant.

𝑠8

𝑠8Tom walks to the market.𝑠0
Tom buys the potion
from the merchant.

𝑠9 𝑠10
Tom buys the potion

from me.

𝑠1

𝑠8Tom walks to the market.𝑠0
Tom buys the potion
from the merchant.

𝑠1

𝑠8
Tom buys the potion
from the merchant.

Tom walks to the market.𝑠0 𝑠1

𝑠11 𝑠12 𝑠13
I buy the potion

from the merchant.
I walk home.

𝑠8
Tom buys the potion
from the merchant.

Tom walks to the market.𝑠0 𝑠1

𝑠11 𝑠12 𝑠13
I buy the potion

from the merchant.
I walk home.

𝑠8
Tom buys the potion
from the merchant.

Tom walks to the market.𝑠0 𝑠1

𝑠8
Tom buys the potion
from the merchant.

Tom walks to the market.𝑠0 𝑠1 𝑠14Tom walks home.

𝑠14Tom walks home.𝑠8
Tom buys the potion
from the merchant.

Tom walks to the market.𝑠0 𝑠1

𝑠15 𝑠16I walk home.

𝑠14Tom walks home.𝑠8
Tom buys the potion
from the merchant.

Tom walks to the market.𝑠0 𝑠1

Evaluation

Comparing Sabre to Other Planners

Centralized Intentions Beliefs Uncertainty

Sabre

Comparing Sabre to Other Planners

• Riedl and Young, “Narrative planning: balancing plot and character,” in JAIR 2010
• Ware and Young, “CPOCL: a narrative planner supporting conflict,” in AIIDE 2011
• Teutenberg and Porteous, “Efficient intent-based narrative generation…,” in AAMAS 2013
• Ware and Young, “Glaive: a state-space narrative planner…,” in AIIDE 2014

Centralized Intentions Beliefs Uncertainty

Sabre

Glaive

Comparing Sabre to Other Planners

• Thorne and Young, “Generating stories … by modeling false character beliefs,” in INT 2017

Centralized Intentions Beliefs Uncertainty

Sabre

Glaive

HeadSpace ~

Comparing Sabre to Other Planners

• Teutenberg and Porteous, “Incorporating global and local knowledge…,” in AAMAS 2015

Centralized Intentions Beliefs Uncertainty

Sabre

Glaive

HeadSpace

IMPRACTical
~
~

Comparing Sabre to Other Planners

• Ryan, Summerville, Mateas, and Wardrip-Fruin, “Toward characters who observe…,” in EXAG 2015
• Si and Marsella, “Encoding Theory of Mind in character design…,” in AHCI 2014

Centralized Intentions Beliefs Uncertainty

Sabre

Glaive

HeadSpace

IMPRACTical

Thespian

~
~

Comparing Sabre to Other Planners

• Eger and Martens, “Practical specification of belief manipulation in games,” in AIIDE 2017

Centralized Intentions Beliefs Uncertainty

Sabre

Glaive

HeadSpace

IMPRACTical

Thespian

Ostari

~
~

Test Problems

• Raiders

• Space

• Ware and Young, “Glaive: a state-space narrative planner…,” in AIIDE 2014

Test Problems

• Raiders
• Space
• Treasure
• Lovers
• Hubris

• Farrell and Ware, “Narrative planning for belief and intention recognition,” in AIIDE 2020
• Shirvani, Farrell, and Ware, “Combining intentionality and belief …,” in AIIDE 2018
• Christensen, Nelson, and Cardona-Rivera, “Using domain compilation to add belief …,” in AIIDE 2020

Test Problems

• Raiders
• Space
• Treasure
• Lovers
• Hubris
• BearBirdJr

• Sack, “Micro-TaleSpin, a story generator,” 1992
• Meehan, “TALE-SPIN, an interactive program that writes stories,” in AAAI 1977

Test Problems

• Raiders
• Space
• Treasure
• Lovers
• Hubris
• BearBirdJr
• Grandma

• Ware, Garcia, Shirvani, and Farrell, “Multi-agent experience management …,” in AIIDE 2019

Results
Domain Nodes Generated Time

Raiders 17,815 1.4 s

Space 192 6 ms

Treasure 288 1 ms

Lovers 5,198,414 40.3 m

Hubris 831 47 ms

BearBirdJr 34,084,068 14.0 m

Grandma 105,178,466 6.2 h

Conclusion

Limitations

• No true uncertainty

• ℎ+ heuristic often performs poorly1

1. Bonet and Geffner, “Planning as heuristic search,” in AI, 2001

Future Work

• More search methods

Future Work

• More search methods

Future Work

• More search methods

• Better heuristics

• Agent emotions and personalities1

1. Shirvani and Ware, “A formalization of emotional planning for strong-story systems,” in AIIDE 2020

http://cs.uky.edu/~sgware/projects/sabre

Background Music: https://www.bensound.com

	Slide 1: Planning
	Slide 2: Learning objectives
	Slide 3: Classical Planning
	Slide 4: Classical Planning
	Slide 5: Representation Language
	Slide 6: State Representation
	Slide 7: Successor States
	Slide 8: Domain
	Slide 9: Algorithms for Classical Planning
	Slide 10: Forward State-Space Search for Planning
	Slide 11: Backward State-Space Search for Planning aka Regression Search
	Slide 12: Heuristics for Planning
	Slide 13: Hierarchical Planning
	Slide 14: Review: Search Vacuum World
	Slide 15: Think-Pair-Share: Search vs Planning
	Slide 16: Planning and Games
	Slide 17: Planning can be used for AI characters
	Slide 18: Generating Puzzles
	Slide 19: Planning and Stories
	Slide 20: UNIVERSE
	Slide 21: UNIVERSE (with multiple goals)
	Slide 22: Partial Order Causal Link (POCL) planning

