Event Representations for Automated Story Generation with Deep Neural Nets

Lara J. Martin, Prithviraj Ammanabrolu, Xinyu Wang, William Hancock, Shruti Singh, Brent Harrison, and Mark O. Riedl {Ijmartin, raj.ammanabrolu, lillywang1126, whancock, shruti.singh}@gatech.edu, harrison@cs.uky.edu, riedl@cc.gatech.edu School of Interactive Computing | Georgia Institute of Technology

can be told as a story

knowledge engineering

[subject, verb, direct object, modifier]

Using this basic format as our template, we experimented on: predicting the subsequent event (event-to-event).

The remaining craft launches a Buzz droid at the ARC 1 7 0 which lands near the Clone Trooper rear gunner who uses a can of Buzz Spray to dislodge the robot.

The remaining *activity.n.01* launches a *happening.n.01* droid at the ORGANIZATION 1 7 0 which property.n.01 near the person.n.01 enlisted_person.n.01 rear skilled_worker.n.01 who uses a *instrumentality.n.03* of *happening.n.01 chemical.n.01* to dislodge the device.n.01

END-TO-END EXAMPLES

Experiment	Input	Extracted Event(s)	Generated Next Event(s)	Generated Next Sentence
All Generalized Events & Generalized Sentence	He reaches out to Remus Lupin, a Defence Against the Dark Arts teacher who is eventually revealed to be a werewolf.	[male.n.02, get-13.5.1, Ø, <char>0] [ORGANIZATION, say-37.7-1, monster.n.01, Ø]</char>	[monster.n.01, amuse-31.1, sarge, Ø] [monster.n.01, amuse-31.1, realize, Ø] [monster.n.01, conjecture-29.5-1, Ø, Ø] [male.n.02, conduit.n.01, entity.n.01, Ø] [male.n.02, free-80-1, Ø, penal_institution.n.01]	When monster.n.01 nemesis.n.01 describes who finally realizes male.n.02 can not, dangerous entity.n.01 male.n.02 is released from penal institution.n.01.
Generalized Event & Generalized S+P Sentence	John unwittingly unleashes an insidious	[<char>0, disassemble-23.3, contagious_disease.n.01, Ø]</char>	[male.n.02, spatial_configuration-47.6, Ø, adopt-93]	male.n.02 crumples and is about to be sheath.n.02.

tertainment intelligence lat

Examples come from synopses of Harry Potter and the Prisoner of Azkaban, Tales of Monkey Island (with Guybrush changed to John), and Carry On Regardless, respectively.

