Utterance Classification in Speech-to-Speech Translation for Zero-Resource Languages in the Hospital Administration Domain

Lara J. Martin, Andrew Wilkinson, Sai Sumanth Miryala, Vivian Robison, and Alan W Black Language Technologies Institute, Carnegie Mellon University

Problem: find for less-common languages.

Goal:

- That is extensible to any other limited domain
- That runs in real time

Building the System

1. Define template phrases

102 English phrases extracted from UPMC staff interviews "Are you her legal guardian?" Examples: "What brings you here today?" "I'd like to reschedule my appointment." "Do you have insurance?"

2. Acquire initial translations

One bilingual speaker translates the English phrases into the source language and records themselves speaking all the phrases

3. Acquire training data

Other source-language speakers record themselves repeating each recorded phrase from the original speaker • 12 native English speakers (7 male, 5 female)

• 5 native Tamil speakers (5 male)

4. Learn to match new source-language utterances to template phrases

5. Classify

At runtime, repeat until dialogue ends:

- Source-language speaker talks; utterance is classified as matching one of the template phrases
 - \rightarrow corresponding target (English) phrase is played
- English speaker responds; utterance is classified to its closest template phrase
 - \rightarrow corresponding source-language translation is played

Introduction

Communities of people who do not speak English need to receive medical care at the University of Pittsburgh Medical Center (UPMC). Traditional translation services are expensive and difficult to

Build a speech-to-speech translation system to enable conversation between patients and hospital staff... For any source language, assuming no previous data or linguistic knowledge That requires only one bilingual speaker, for initial translation

Phonetic Representations of Audio

A. Detected English Phonemes [Sitaram et al.]: "What brings you here today?" Original Phrase: "SIL W AH T P R IH NG Z IY HH IH R D IH D EY" Eng. Phones:

B. Inferred Phonemes (IPs) [Muthukumar and Black]: Original Phrase: "What brings you here today?" "ip25 ip26 ip26 ip26 ip25 ip4 ip13 ip13 ip13 ip13 ip14 47 IPs: ip14 ip14 ip14 ip24...

Ways of Classifying Phrases

5.

String Edit Distance—Articulatory Feature Weights Euclidean distance

Language	% Top 1	% Top 5	% Top 10	Avg. Rank
English	63.562	99.183	99.265	1.525
Tamil	37.843	94.510	99.216	2.714
Eng-Small	26.471	72.876	82.680	12.368

Learning Weights—Iterations

English-Small					
Iterations	% Top 1	% Top 5	% Top 10	Avg.	
				Rank	
No Weights	80.392	87.255	88.235	7.072	
1x	88.235	95.425	96.732	1.913	
2x	79.739	90.196	92.484	2.837	
3x	76.797	87.255	92.157	3.433	
4x	79.412	90.850	93.137	3.047	
5x	76.797	89.216	92.484	3.700	
6x	81.046	91.176	93.464	3.187	

Learned Weights—One Iteration

English-Small						Tamil				
Feats	% Top 1	% Top 5	% Top 10	Avg.		Feats	% Top 1	% Top 5	% Top 10	Avg.
				Rank						Rank
Eng	88.235	95.425	96.732	1.913		Eng	49.608	77.255	86.078	8.128
IP-15	13.072	34.641	48.039	27.437	1	IP-14	25.098	53.529	65.882	13.736
IP-17	15.033	40.523	55.556	22.447		IP-17	33.529	65.098	76.471	10.532
IP-30	21.895	49.020	60.458	16.623	1	IP-24	37.843	70.784	83.137	6.375
IP-47	16.667	47.712	58.824	19.823		IP-51	47.647	75.686	86.275	5.816
IP-84	18.627	42.157	55.556	20.077		IP-82	47.647	74.510	82.745	7.000
IP-92	19.608	41.503	56.863	18.210		IP-93	46.275	76.471	84.510	6.569
IP-101	15.033	37.908	49.673	20.467		IP-103	49.608	76.667	84.314	6.413

- English phonemes work the best with English • SED weight learning through linear regression
- For Tamil, the IPs work somewhat better than the English phonemes & learning SED weights does not improve results using the default weights
- To save time, we should use the English phones
- Attempt combining methods, in addition to other classification techniques **Questions:**
- ones are most useful?
- Will our system be able to extend to our 750-plus phrases? Our 102 phrases are fairly phonetically distinct.
- Will dialogue-state tracking improve performance?

% Top 1	% Top 10	Avg.
Stage II		Rank*
69.75	99.93	1.62
41.6	71.38	2.82

Tomil		
Tami		
% Top 5	% Top 10	Avg.
		Rank
92.941	99.020	2.409
98.627	99.608	1.821
97.843	99.608	1.925
97.647	99.804	1.749
97.255	99.608	1.846
97.255	99.608	1.755
97.255	99.608	1.795
98.039	99.608	1.839
97.255	99.804	1.745
05 000	00 412	1.000

Discussion

How many speakers are needed to build an adequate system, and which