Motivation

Automated Plot Generation is the problem of creating a sequence of main plot points that create a story.

Existing story and plot generators lack **controllability**—the ability to receive guidance to achieve a particular goal.

Simply sampling from a probability distribution creates aimless stories that lack plot **coherence**.

Reward Function

Reward a seq2seq model when it moves the story progressively toward a target

(1) Compute reward for all verbs using: Frequency before target verb $r_2(v) = \log \frac{\kappa_{v,g}}{N}$ **Distance** from target verb $r_1(v) = \log \sum l_s - d_s(v,g)$ $s \in S_{v,a}$

Create clusters of verbs based on their **reward values**

 $R(v) = \alpha \times r_1(v) \times r_2(v)$

using Jenks Natural Breaks

- **Constrain output verb** selection to the **next cluster**.
- Use the **REINFORCE** method to backpropagate the reward

Controllable Neural Story Plot Generation via Reinforcement Learning

Neural story plot generation can be controlled via guiding a language model through intermediate plot points toward a desired goal

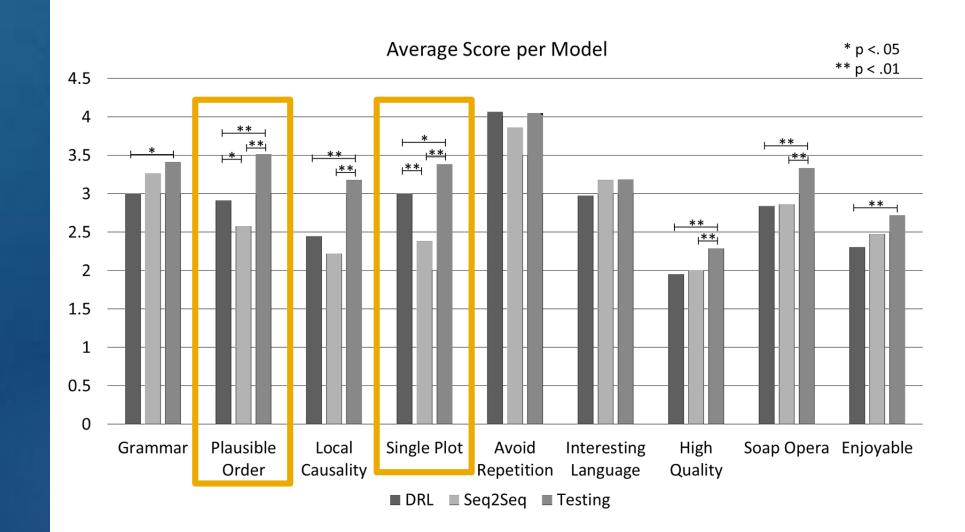
Pradyumna Tambwekar, Murtaza Dhuliawala, Lara J. Martin, Animesh Mehta, Brent Harrison, and Mark O. Riedl

https://arxiv.org/abs/1809.10736

Goal

Find a **coherent** sequence of **events** that results in a world state where a desired goal holds.

RL allows to address the **control** and **coherence** in plot generation


Contributions

We present a **policy gradients** approach to plot generation.

Our novel **reward shaping** technique facilitates intermediate rewards, enabling the system to progress towards a **specific goal**.

Results

Goal	Model	Goal Achievement Rate	Average Perplexity	Average Story Length
admire	Seq2Seq	35.52%	48.06	7.11
	DRL	15.82%	5.73	7.32
	DRL + Clustering	94.29%	7.61	4.90
marry	Seq2Seq	39.92%	48.06	6.94
	DRL	24.05%	9.78	7.38
	DRL + Clustering	93.35%	7.05	5.76

entertainment intelligence lab