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Abstract. Improvisational storytelling involves one or more people interacting
in real-time to create a story without advanced notice of topic or theme. Human
improvisation occurs in an open-world that can be in any state and characters
can perform any behaviors expressible through natural language. We propose
the grand challenge of computational improvisational storytelling in open-world
domains. The goal is to develop an intelligent agent that can sensibly co-create a
story with one or more humans through natural language. We lay out some of
the research challenges and propose two agent architectures that can provide the
basis for exploring the research issues surrounding open-world human-agent
interactions.
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1 Introducing Computational Improvisation

Storytelling has been of interest to artificial intelligence researchers since the earliest
days of the field. Artificial intelligence research has addressed story understanding,
automated story generation, and the creation of real-time interactive narrative experi-
ences. Specifically, interactive narrative is a form of digital interactive experience in
which users create or influence a dramatic storyline through actions by assuming the
role of a character in a fictional virtual world, issuing commands to computer-
controlled characters, or directly manipulating the fictional world state [1]. Interactive
narrative requires an artificial agent to respond in real time to the actions of a human
user in a way that preserves the context of the story and also affords the user to exert his
or her intentions and desires on the fictional world. Prior work on interactive narrative
has focused on closed-world domains—a virtual world, game, or simulation environ-
ment constrained by the set of characters, objects, places, and the actions that can be
legally performed. Such a world can be modeled by finite AI representations, often
based on logical formalizations. In this paper, we propose a grand challenge of creating
artificial agents capable of engaging with humans in improvisational, real-time story-
telling in open worlds.

Improvisational storytelling involves one or more people constructing a story in
real time without advanced notice of topic or theme. Improvisational storytelling is
often found in improv theatre, where two or more performers receive suggestions of
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theme from the audience. Improvisational storytelling can also happen in informal
settings such as between a parent and a child or in table-top role-playing games. While
improvisational storytelling is related to interactive narrative, it differs in three sig-
nificant ways. First, improvisational storytelling occurs in open worlds. That is, the set
of possible actions that a character can perform is the space of all possible thoughts that
a human can conceptualize and express through natural language. Second, improvi-
sational storytelling relaxes the requirement that actions are strictly logical. Since there
is no underlying environment other than human imagination, characters’ actions can
violate the laws of causality and physics, or simply skip over boring parts. However, no
action proposed by human or agent should be a complete non sequitur. Third, character
actions are conveyed through language and gesture.

In this paper we explore the challenges from and potential solutions to creating
computational systems that can engage with humans in improvisational storytelling.
We envision a system in which humans control some characters in an open world,
while some are controlled by artificial intelligence. Beyond entertainment, computa-
tional improvisational storytelling unlocks the potential for a number of serious
applications. Computational improvisational storytelling systems could engage with
forensic investigators, intelligence analysts, or military strategists to hypothesize about
crimes or engage in creative war-gaming activities. Virtual agents and conversational
chatbots can also create a greater sense of rapport with human users by engaging in
playful activities or gossip. Successful development of an artificial agent capable of
engaging with humans in open-world improvisational storytelling will demonstrate a
human-level ability to understand context in communication. It will also provide an
existence proof that artificial intelligence can achieve human-like creativity.

2 Background

2.1 Interactive Narrative

Riedl and Bulitko [1] give an overview of AI approaches to interactive narrative. The
most common form of interactive narrative involves the user taking on the role of the
protagonist in an unfolding storyline. The user can also be a disembodied observer—as
if watching a movie—but capable of making changes to the world or talking to the
characters. A common solution, first proposed by Bates [2] is to implement a drama
manager. A drama manager is an intelligent, omniscient, and disembodied agent that
monitors the virtual world and intervenes to drive the narrative forward according to
some model of quality of experience. An experience manager [3] is a generalization of
this concept, recognizing the fact that not all narratives need to be dramatic, such as in
the case of education or training applications.

There are many AI approaches to experience management. One way is to treat the
problem of story generation as a form of search such as planning [3–5], adversarial
search [6, 7], reinforcement learning [8], or case-based reasoning [9, 10], although
planning is still appropriate for games since they are closed systems [11]. All of the
above systems assume an a priori-known domain model that defines what actions are
available to a character at any given time.
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Closed-world systems can sometimes appear open. Façade [12] allows users to
interact with virtual characters by freely inputting text. This gives the appearance of
open communication between the human player and the virtual world; however, the
system limits interactions by assigning the natural language input to dramatic beats that
are part of the domain model. Open-world story generation attempts to break the
assumption of an a priori-known domain model. Scheherazade-IF [13] attempts to
learn a domain model in order to create new stories and interactive experiences in
previously unknown domains. However, once the domain is learned, it limits what
actions the human can perform to those within the domain model. Say Anything [14] is
a textual case-based-reasoning story generator, meaning that it operates in the space of
possible natural language sentences. It responds to the human user by finding sentences
in blogs that share a similarity to human-provided sentences, but consequently tends to
fail to maintain story coherence without human intervention.

2.2 Improv Theatre

Humans have the ability to connect seemingly unrelated ideas together. If a computer is
working together with a user to create a new story, the AI must be prepared to handle
anything the human can think of. Even when given a scenario that appears constrained,
people can—and will—produce the unexpected. Magerko et al. [15] conducted a
systematic study of human improv theatre performers to ascertain how they are able to
create scenes in real time without advanced notice of topic or theme. The primary
conclusion of this research is that improv actors work off of a huge set of basic scripts
that compile the expectations of what people do in a variety of scenarios. These scripts
are derived from common everyday experiences (e.g., going to a restaurant) or familiar
popular media tropes (e.g., Old West shoot out). Magerko and colleagues further
investigated possible computational representations of scripts used in improv [16], and
how improv actors create and resolve violations in scripts [17].

3 Open-World Improvisational Storytelling

In order to push the boundaries of AI and computational creativity we argue that it is
essential to explore open-world environments because (a) we know that humans are
capable of doing so, especially with training (actors, comedians, etc.), and (b) natural
language interaction is an intuitive mode of human-computer interaction for humans
that is not constrained to finite sets of well-defined actions. Once the mode of inter-
action between a human and an artificial agent is opened up to natural language, it
would be unnatural and ultimately frustrating for the human to restrict their vocabulary
to what the agent can understand and respond sensibly to. An intelligent agent trained
to work from within a closed world will struggle to come up with appropriate responses
to un-modeled actions. On the other hand, limiting the user’s actions and vocabulary
also limits the user’s creativity.

There are two general problems that must be addressed to achieve open-world
improvisational storytelling. First, an intelligent improvisational agent must have a set
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of scripts comparable in scope to that held by a human user. This is in part addressed by
systems, such as Scheherazade [18] which learns scripts from crowdsourced example
stories, or various projects learning scripts from internet corpora [19, 20]. We loosely
define a script as some expectation over actions. To date, no system has demonstrated
that it has learned a comprehensive set of scripts; however, once a comprehensive set of
scripts exists, these scripts can be used to anticipate human actions that are consistent
with the scripts and generate appropriate responses.

Second, an intelligent improvisational agent must be able to recognize and respond
to off-script actions. This means that the agent will need to generate new, possibly
off-script actions of its own in order to respond to the player in a seemingly non-random
way. The reasons why a human goes off script can be technical—the human’s script
does not exactly match the agent’s script for the same scenario—or because the human
wishes to express creative impulses or test the boundaries of the system.

Since humans normally tend to work off of some sort of script while improvising,
whether it is explicit or not, the AI also needs to relate user utterances to a script through
natural language understanding (NLU). Keeping track of a script is a matter of com-
paring the meanings of human utterances—or semantics—which is an open research
question. Given language’s nearly infinite possibilities, it is very unlikely that two
people would use the exact same words or syntax to express the same idea. It is just as
unlikely that a user would create a similar sentence as the creators of the agent would.
Beyond understanding the meaning of individual sentences, there is still the matter of
what the semantics of the sentence mean within the context of the entire story—also
known as the pragmatics—since context is important to maintaining coherence in a
conversation.

In the remaining sections, we will introduce two potential approaches. The first uses
script representations closely aligned with observations of improv actors. The second
uses neural networks trained on a corpus of stories.

4 Plot Graph Approach

We present a first attempt at creating a computational architecture for maintaining a
coherent story context when co-creating with a human user. We acknowledge that
open-world improvisation will not be solved until we address many open research

Fig. 1. The proposed plot graph system’s architecture. (Color figure online)
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challenges. Our goal is to offer an initial conjecture about how an improvisational agent
might be built, which can be expanded upon as research challenges become solved.

The proposed system architecture is shown above in Fig. 1. First, the user enters in
a line of text to narrate the action that they want the main character to take. This text is
compared against the script, in this case represented as a plot graph (Sect. 4.1). Natural
language processing happens in two stages: interpreting the semantic content in order
to track the world state (Sect. 4.2) and determining the constituency of the user’s action
(Sect. 4.3). The agent employs different strategies for responding to sentences based on
whether they describe actions that are constituent, consistent, or exceptional. Once the
AI produces a sentence, the entire process repeats.

4.1 Introduction to Plot Graphs

For our work, we assume a script representation; in particular, one called a plot graph.
Plot graphs have been found to be effective for interactive narrative and story gener-
ation [6–8, 13, 18]. We use the representation developed by Li et al. [18], which
facilitates script learning from crowdsourced narrative examples. A plot graph is a
script representation that compactly describes a space of possible stories (and thus
expectations about stories) that can be told about a specific scenario such as going to a
restaurant or robbing a bank. A plot graph is a directed acyclic graph where the nodes
in the plot graph are events. One type of edge represents temporal precedence rela-
tionships between events. For example, consider the plot graph in Fig. 2, which shows
a fragment of a plot graph for robbing a bank. The plot graph node <John Enters the
Bank> is connected to <John Scans the Bank>, which means that the former event must
be completed before the latter would be expected to begin. These relationships,
however, are not strict causal relationships. The node <John Covers Face>, for
example, is also connected to <John Approaches Sally> but has no parent node. This
means that it can be executed at any time as long as it occurs before John approaches
Sally. A second type of link between nodes represents mutual exclusivity of events,
where the occurrence of one event predicts the absence of the other. Mutual exclusions
encode branches in the plot where a choice leads to different variations of the scenario.

Fig. 2. A section of the robbery plot graph used in our system, where solid arrows represent
temporal precedence and dotted lines represent mutual exclusion between plot event nodes.
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Each plot graph node contains a set of semantically-similar sentences, describing the
same event in different ways. A plot graph can be used to generate different legal
sequences of events. The plot graph in Fig. 2 was learned from data and algorithms
from Li et al. [18].

4.2 Maintaining World State

One of the challenges of open-world improvisational storytelling is representing and
maintaining a world state without making too many constraining assumptions about the
entities and relations between entities that can occur in the world. Furthermore, new
entities, objects, and places can be created at any time. We propose that the AI’s
internal world state contains two aspects: the AI’s current knowledge about the world’s
usable items (beliefs), and the AI’s memory of the story.

The AI’s belief system about world state must ground each user or AI turn in terms
of the semantics of the action expressed in natural language. One solution is to ground
all sentences using VerbNet [21], an ontology of verbs and their syntax-dependent
semantics created by linguists to serve as a domain-independent verb lexicon. VerbNet
consists of frames for sets of verbs that are semantically and generally syntactically
equivalent. Frames contain rules for how to label entities playing roles in the sentences
(e.g., “John rode his horse to the bank” infers that “John” and “his horse” are now at
“the bank”), predicate-like facts about those roles (e.g., “John rode his horse” means
that “John” and “his horse” moved), and limiting factors for which entities can fill roles
(e.g., the verb “ride” requires an animate object).

We are augmenting VerbNet to include predicates about accessibility and proximity.
Entities that are accessible exist in the world and entities that are proximate to the AI
agent can be directly manipulated. When the user or the agent takes a turn, grounded

Fig. 3. An example of the two parts of the state where the first event is “John rode his horse”
(E0), followed by the second event: “John entered the bank” (E1). On the top half of the figure are
the beliefs of the AI shown after E0 and E1, respectively. The bottom half of the figure shows the
AI’s memory during these events.
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predicates are added to the agent’s belief state, which continues to grow at every turn
unless something becomes inaccessible (i.e., it dies, it disappears, it is eaten, etc.). See
the top portion of Fig. 3 for an example of beliefs.

The AI’s memory allows the agent to organize concepts based on recency and
spatiality. We propose to use the event-indexing model [22], a psychology framework
that is meant to explain how people comprehend new information and store it in their
long-term memory. Event indexing has been modified previously for artificial intelli-
gence and story comprehension to model a readers’ memory [23, 24]. The AI maintains
a memory graph of what nouns (entities) were mentioned during which turns and what
is spatially proximate. Entities are connected to a special node representing the event,
En, as well as to any other entity referenced by the event’s sentence. The salience of
objects can be computed as the distance in the memory graph between two objects. See
the bottom portion of Fig. 3 for an example of an event-indexing memory structure that
corresponds to the world state beliefs.

4.3 Responding to the User

Recall that improvisational storytelling involves identifying the script for a situation
and then breaking that script. Therefore, one of the first things a computational
improvisational agent must do is to identify whether the user is attempting to follow a
script or break it. Riedl et al. [4] established a classification for how user actions relate
to the sense of continuity and coherence in interactive narratives:

• Constituent: User actions that meet the expectation of the AI. In the case of
improvisational storytelling, a constituent action is one predicted by the AI’s script.

• Consistent: User actions that do not meet the expectation of the AI but do not
prevent the AI from continuing to execute according to its script.

• Exceptional: User actions that do not meet the expectation of the AI and exclude the
possibility of the AI continuing to execute according to its script.

An improvisational agent must determine if a user action is constituent, consistent,
or exceptional. Consistent actions should be responded to before continuing with
actions recommended by a script. Exceptions have been the subject of prior research [3,
4, 25]. Once an exceptional user action is identified, we need to have a system that can
respond in a sensible matter via planning. We need a way to turn the action that was
decided as an appropriate next step into a set of semantic units, and then translate the
semantics into some sort of grammatical sentence. Natural language generation is not
yet a solved problem, let alone generating creative sentences.

Constituent Branch. A constituent action indicates that the user is likely to be fol-
lowing the script. The constituent response strategy is shown in orange in Fig. 1. Our
check for constituency is straightforward: The agent checks to see if the user’s sentence
matches against one of the plot events that can directly succeed the most
recently-executed plot event. If the user’s action is constituent, the agent can follow up
by selecting a successor plot event from the plot graph (if the plot event belongs to an
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AI-controlled character). To respond to the user, the agent can choose any existing
sentence in the cluster of sentences associated with the selected plot graph node.

Consistent Branch. Consistent actions are those that do not move the script forward
but also do not prevent it from moving forward. The agent’s strategy for consistent
actions is shown in purple in Fig. 1. If the agent fails to match the user’s sentence to the
plot graph and the action is not deemed an exception, the agent continues the story by
generating an off-script response. While there are many techniques that can be used to
select off-script responses, our proposal is to generate a response by identifying objects
with high-salience from its “memory”, selecting one that is accessible, and then
determining which actions can be performed with said object. One way to determine
which verbs can be performed on an entity is to query ConceptNet 5 [26], a com-
monsense knowledgebase that has a large number of facts about objects commonly
found in the real world and what they are used for. The actions that can be performed
on the object are looked up in VerbNet, and all possible sentences are generated from
the verb frame’s syntax templates by filling roles. Any sentence generated in this way
can be selected randomly or ranked according to likelihood. The likelihood of a sen-
tence can be computed by constructing a language model over a large corpus such as
Wikipedia or Google’s Project Gutenberg that estimates the how likely combinations of
verbs and nouns are to co-occur in the English language.

Exceptional Branch. Exceptions occur when the user’s action causes the world to
enter a state in which no successor in the plot graph can be executed because one or
more preconditions of each successor plot point is contradicted. Exceptions can also
occur when future plot events that must occur likewise have their preconditions con-
tradicted. For example, a character expected to contribute to the script is absent, a
necessary object is missing, or the user is in the wrong place. The agent’s strategy for
handling exceptions is shown in red in Fig. 1. The improvisational agent must still act,
and one strategy is to “repair” the script by finding another action, or sequence of
actions, that is not part of the plot graph but restores the world state such that a
subsequent plot point can execute. This repair process can be modeled as a planning
problem: the task of searching for a sequence of actions that transforms the world state
into one in which a goal situation holds. Planning has been applied to repairing stories
represented as partial-order plans [3, 4] and stories represented as petri nets [25].

Planning can be used to repair plot graphs as well. The goal situation is any state in
which the preconditions of a successor plot point or descendant of a successor holds.
By finding a sequence of actions to be performed by the user and AI-controlled entities,
the plot graph is restored and able to continue as normal; the planned sequence
becomes a branch of the plot graph. However, there is at least one remaining open
challenge. The space of possible actions, being all actions that can be expressed in
language, is very large, and the complexity of search is proportional to the branching
factor. Therefore, despite work on planning with language in closed worlds [27], the
complexity of search through language in an open-world would have a very large, if
not infinite, branching factor. Even abstracting actions into VerbNet frames results in a
branching factor in the thousands (number of frames in the ontology times the number
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of ways roles can be instantiated with known characters and objects).1 Fortunately,
most repairs are likely to require a sequence of one or two actions. Sampling-based
planning algorithms such as Monte Carlo Tree Search may be adapted to story repair.

It is possible that no repair is possible, meaning the planner fails to find a sequence
of actions that transforms the world into a state where the plot graph can continue
executing. This may be due to non-reversible actions (e.g., an object is destroyed)
performed by the user or due to the search failing because of the size of the search
space and the need to respond within a small, fixed amount of time. In this case, new
strategies will be required, such as switching to an emergent, reactionary storytelling
mode such as that used to generate the response in the consistent branch.

4.4 Limitations

The proposed architecture addresses the challenges that we put forth earlier in this
paper; however, there are several limitations that must be mentioned. One limitation is
that this technique assumes the presence of a plot graph to act as a script. While
Scheherazade has the ability to learn plot graphs from crowdsourced stories, it will be
problematic to assume that the system will have access to all possible stories that a user
may want to tell. Furthermore, the learned plot graphs may not match the scripts held in
human users’ heads, so the user may perform actions not in the AI’s plot graph or skip
over events deemed irrelevant or uninteresting. To handle greater stochasticity of
human behavior, it will be advantageous to convert the plot graph into a dynamic
probabilistic graph with skip-transitions, allowing the AI to jump to the most appro-
priate event in the plot graph. Often in improvisational storytelling, one would move
seamlessly from one script to another or blend elements of several scripts. A more
complete system would require the ability to recognize if the user has changed topics—
a common yet not fully solved problem shared with other conversational AI systems—
or to merge plot graphs to better explain what the user is trying to do.

Additionally, the performance of the agent is heavily reliant on the performance of
the natural language processing (NLP) techniques used. NLP, especially in the areas of
semantic reasoning and pragmatics are still open research problems. Further, VerbNet
may not be the best technique for tracking semantics, and ConceptNet is known to be
incomplete. These limitations are enumerated here to recommend research areas likely
necessary to move the state of the art in interactive narrative systems toward those fully
capable of open-world story improvisation with humans.

5 Neural Network Approach

We previously proposed the use of plot graphs to model expectation in a story and
explicitly build up state information using external ontologies and corpora. One
alternative way that this could be done is to model expectation using a recurrent neural
network (RNN) with long short-term memory (LSTM) nodes to preserve story context.

1 This analysis excludes the possibility of creating new objects.
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These types of networks can take in a sequence of past events and generate a possibly
infinite sequence of new events. During training, RNNs learn a representation of state
that is embedded in the network’s hidden LSTM layers. As a result, this technique is
not as reliant on external ontologies to learn state information. In addition, expectation
is innate in an RNN. Each time a new event is presented to the RNN, it will calculate a
probability distribution over the expected next events. Thus, script information can be
extracted by choosing the most expected event to occur at a given time step [20].

In terms of our initial proposed architecture, this means that an RNN is well suited
to handle constituent actions that the user may take, where constituent would mean the
user performed an event that the RNN was expecting to see with high probability.
However, consistent and exceptional events—events performed by the user that are not
high-probability transitions and may also create logical inconsistencies later—may
present challenges to RNNs. As with the prior approach, consistent and exceptional
events can be handled by turning improvisation into a planning problem.

There has been promising work done using deep reinforcement learning (Deep-RL)
to dynamically generate dialogues [28]. Reinforcement learning is a technique for
solving planning problems in stochastic and uncertain domains. A reward function
provides a measure for how much value the algorithm receives for performing certain
actions in certain states; reinforcement learning attempts to maximize expected reward
over time. Deep-RL involves the use of a deep neural net to estimate the probability of
transitioning from one state to another or the value that will be received in states it has
not previously seen. Here, the RNN learns an internal representation of state and uses
that in conjunction with an author-supplied reward function to determine the value of
generating an event at the current time. Using this framework, these deep neural
approaches can handle consistent and exceptional actions. If the user takes off-script
actions, then the system will still generate events that will maximize its long-term
reward. Thus, the system’s behavior is largely dependent on how this reward function
is defined. For example, if the reward function prioritized staying on-script then it
would strive to return to a state where future events are predicted with high probability.

There are many advantages to this type of approach. First, it does not rely on
external ontologies to build up a representation of state. These neural models can be
trained on corpora of natural language, such as stories or news articles, including
non-English corpora. In addition, this allows the system to easily learn different types
of behavior based on the corpus used for training. The previously proposed architecture
uses plot graphs to encode commonsense procedures and then provides strategies for
handling unexpected user behavior. What a neural net expects would depend on the
data it is trained upon; for example, training it on plot synopses of movies would
naturally lead to expectations of dramatic behavior from the user and more com-
monsense behavior would be considered exceptional. One disadvantage of a neural
network approach is that the state representation used by the RNN is obfuscated in the
hidden LSTM layers. Thus, it is not clear as to why the system will make certain
choices (beyond the goal of maximizing future reward). This loss in system trans-
parency can make it difficult to evaluate the effectiveness of such a system. Since state
cannot be directly observed, this leads to a greater likelihood of non-sequiturs due to
mistaken beliefs about the state of the fictional improv world.
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6 Conclusions

In this paper, we introduce improvisational storytelling, one or more people con-
structing a story in real time without advanced notice of topic or theme. We discuss
some of the challenges that need to be addressed in order to create a computational,
improvisational storytelling system and propose two architectures that address some of
these challenges as a starting point.

As human-AI interaction becomes more common, it becomes more important for
AIs to be able to engage in open-world improvisational storytelling. This is because it
enables AIs to communicate with humans in a natural way without sacrificing the
human’s perception of agency. We hope that formalizing the problem and examining
the challenges associated with improvisational storytelling will encourage researchers
to explore this important area of work to help enable a future where AI systems and
humans can seamlessly communicate with one another.
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